Spaces:
Running
Running
yourusername
commited on
Commit
·
28b1a6e
1
Parent(s):
a58eee5
:beers: cheers
Browse files- app.py +77 -0
- modeling.py +89 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from PIL.Image import Resampling
|
8 |
+
from pytorchvideo.data.encoded_video import EncodedVideo
|
9 |
+
from pytorchvideo.transforms.functional import uniform_temporal_subsample
|
10 |
+
from torchvision.io import write_video
|
11 |
+
from torchvision.transforms.functional import resize
|
12 |
+
|
13 |
+
from modeling import Generator
|
14 |
+
|
15 |
+
MAX_DURATION = 4
|
16 |
+
OUT_FPS = 18
|
17 |
+
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
|
18 |
+
|
19 |
+
# Reupload of model found here: https://huggingface.co/spaces/awacke1/Image2LineDrawing
|
20 |
+
model = Generator(3, 1, 3)
|
21 |
+
weights_path = hf_hub_download("nateraw/image-2-line-drawing", "pytorch_model.bin")
|
22 |
+
model.load_state_dict(torch.load(weights_path, map_location=DEVICE))
|
23 |
+
model.eval()
|
24 |
+
|
25 |
+
|
26 |
+
def process_one_second(vid, start_sec, out_fps):
|
27 |
+
"""Process one second of a video at a given fps
|
28 |
+
|
29 |
+
Args:
|
30 |
+
vid (_type_): A pytorchvideo.EncodedVideo instance containing the video to process
|
31 |
+
start_sec (_type_): The second to start processing at
|
32 |
+
out_fps (_type_): The fps to output the video at
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
np.array: The processed video as a numpy array with shape (T, H, W, C)
|
36 |
+
"""
|
37 |
+
# C, T, H, W
|
38 |
+
video_arr = vid.get_clip(start_sec, start_sec + 1)["video"]
|
39 |
+
# C, T, H, W where T == frames per second
|
40 |
+
x = uniform_temporal_subsample(video_arr, out_fps)
|
41 |
+
# C, T, H, W where H has been scaled to 256 (This will probably be no bueno on vertical vids but whatever)
|
42 |
+
x = resize(x, 256, Resampling.BICUBIC)
|
43 |
+
# C, T, H, W -> T, C, H, W (basically T acts as batch size now)
|
44 |
+
x = x.permute(1, 0, 2, 3)
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
# T, 1, H, W
|
48 |
+
out = model(x)
|
49 |
+
|
50 |
+
# T, C, H, W -> T, H, W, C Rescaled to 0-255
|
51 |
+
out = out.permute(0, 2, 3, 1).clip(0, 1) * 255
|
52 |
+
# Greyscale -> RGB
|
53 |
+
out = out.repeat(1, 1, 1, 3)
|
54 |
+
return out
|
55 |
+
|
56 |
+
|
57 |
+
def fn(fpath):
|
58 |
+
start_sec = 0
|
59 |
+
vid = EncodedVideo.from_path(fpath)
|
60 |
+
duration = min(MAX_DURATION, int(vid.duration))
|
61 |
+
for i in range(duration):
|
62 |
+
print(f"🖼️ Processing step {i + 1}/{duration}...")
|
63 |
+
video = process_one_second(vid, start_sec=i + start_sec, out_fps=OUT_FPS)
|
64 |
+
gc.collect()
|
65 |
+
if i == 0:
|
66 |
+
video_all = video
|
67 |
+
else:
|
68 |
+
video_all = np.concatenate((video_all, video))
|
69 |
+
|
70 |
+
write_video("out.mp4", video_all, fps=OUT_FPS)
|
71 |
+
return "out.mp4"
|
72 |
+
|
73 |
+
|
74 |
+
webcam_interface = gr.Interface(
|
75 |
+
fn, gr.Video(source="webcam"), gr.Video(type="file", format="mp4")
|
76 |
+
)
|
77 |
+
webcam_interface.launch()
|
modeling.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Taken from here: https://huggingface.co/spaces/awacke1/Image2LineDrawing
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
norm_layer = nn.InstanceNorm2d
|
5 |
+
|
6 |
+
|
7 |
+
class ResidualBlock(nn.Module):
|
8 |
+
def __init__(self, in_features):
|
9 |
+
super(ResidualBlock, self).__init__()
|
10 |
+
|
11 |
+
conv_block = [
|
12 |
+
nn.ReflectionPad2d(1),
|
13 |
+
nn.Conv2d(in_features, in_features, 3),
|
14 |
+
norm_layer(in_features),
|
15 |
+
nn.ReLU(inplace=True),
|
16 |
+
nn.ReflectionPad2d(1),
|
17 |
+
nn.Conv2d(in_features, in_features, 3),
|
18 |
+
norm_layer(in_features),
|
19 |
+
]
|
20 |
+
|
21 |
+
self.conv_block = nn.Sequential(*conv_block)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
return x + self.conv_block(x)
|
25 |
+
|
26 |
+
|
27 |
+
class Generator(nn.Module):
|
28 |
+
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
29 |
+
super(Generator, self).__init__()
|
30 |
+
|
31 |
+
# Initial convolution block
|
32 |
+
model0 = [
|
33 |
+
nn.ReflectionPad2d(3),
|
34 |
+
nn.Conv2d(input_nc, 64, 7),
|
35 |
+
norm_layer(64),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
]
|
38 |
+
self.model0 = nn.Sequential(*model0)
|
39 |
+
|
40 |
+
# Downsampling
|
41 |
+
model1 = []
|
42 |
+
in_features = 64
|
43 |
+
out_features = in_features * 2
|
44 |
+
for _ in range(2):
|
45 |
+
model1 += [
|
46 |
+
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
47 |
+
norm_layer(out_features),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
]
|
50 |
+
in_features = out_features
|
51 |
+
out_features = in_features * 2
|
52 |
+
self.model1 = nn.Sequential(*model1)
|
53 |
+
|
54 |
+
model2 = []
|
55 |
+
# Residual blocks
|
56 |
+
for _ in range(n_residual_blocks):
|
57 |
+
model2 += [ResidualBlock(in_features)]
|
58 |
+
self.model2 = nn.Sequential(*model2)
|
59 |
+
|
60 |
+
# Upsampling
|
61 |
+
model3 = []
|
62 |
+
out_features = in_features // 2
|
63 |
+
for _ in range(2):
|
64 |
+
model3 += [
|
65 |
+
nn.ConvTranspose2d(
|
66 |
+
in_features, out_features, 3, stride=2, padding=1, output_padding=1
|
67 |
+
),
|
68 |
+
norm_layer(out_features),
|
69 |
+
nn.ReLU(inplace=True),
|
70 |
+
]
|
71 |
+
in_features = out_features
|
72 |
+
out_features = in_features // 2
|
73 |
+
self.model3 = nn.Sequential(*model3)
|
74 |
+
|
75 |
+
# Output layer
|
76 |
+
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
|
77 |
+
if sigmoid:
|
78 |
+
model4 += [nn.Sigmoid()]
|
79 |
+
|
80 |
+
self.model4 = nn.Sequential(*model4)
|
81 |
+
|
82 |
+
def forward(self, x, cond=None):
|
83 |
+
out = self.model0(x)
|
84 |
+
out = self.model1(out)
|
85 |
+
out = self.model2(out)
|
86 |
+
out = self.model3(out)
|
87 |
+
out = self.model4(out)
|
88 |
+
|
89 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
huggingface_hub
|
3 |
+
torch==1.11.0
|
4 |
+
torchvision==0.12.0
|
5 |
+
pytorchvideo==0.1.5
|