Spaces:
Runtime error
Runtime error
import torch | |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from xora.models.transformers.transformer3d import Transformer3DModel | |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
from xora.schedulers.rf import RectifiedFlowScheduler | |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline | |
from pathlib import Path | |
from transformers import T5EncoderModel, T5Tokenizer | |
import safetensors.torch | |
import json | |
import argparse | |
from xora.utils.conditioning_method import ConditioningMethod | |
import os | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import random | |
def load_vae(vae_dir): | |
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors" | |
vae_config_path = vae_dir / "config.json" | |
with open(vae_config_path, "r") as f: | |
vae_config = json.load(f) | |
vae = CausalVideoAutoencoder.from_config(vae_config) | |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
vae.load_state_dict(vae_state_dict) | |
return vae.cuda().to(torch.bfloat16) | |
def load_unet(unet_dir): | |
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors" | |
unet_config_path = unet_dir / "config.json" | |
transformer_config = Transformer3DModel.load_config(unet_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
transformer.load_state_dict(unet_state_dict, strict=True) | |
return transformer.cuda() | |
def load_scheduler(scheduler_dir): | |
scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
return RectifiedFlowScheduler.from_config(scheduler_config) | |
def center_crop_and_resize(frame, target_height, target_width): | |
h, w, _ = frame.shape | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_frame = w / h | |
if aspect_ratio_frame > aspect_ratio_target: | |
new_width = int(h * aspect_ratio_target) | |
x_start = (w - new_width) // 2 | |
frame_cropped = frame[:, x_start : x_start + new_width] | |
else: | |
new_height = int(w / aspect_ratio_target) | |
y_start = (h - new_height) // 2 | |
frame_cropped = frame[y_start : y_start + new_height, :] | |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
return frame_resized | |
def load_video_to_tensor_with_resize(video_path, target_height=512, target_width=768): | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
frame_resized = center_crop_and_resize(frame_rgb, target_height, target_width) | |
frames.append(frame_resized) | |
cap.release() | |
video_np = (np.array(frames) / 127.5) - 1.0 | |
video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float() | |
return video_tensor | |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
image = Image.open(image_path).convert("RGB") | |
image_np = np.array(image) | |
frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
frame_tensor = (frame_tensor / 127.5) - 1.0 | |
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) | |
return frame_tensor.unsqueeze(0).unsqueeze(2) | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Load models from separate directories and run the pipeline." | |
) | |
# Directories | |
parser.add_argument( | |
"--ckpt_dir", | |
type=str, | |
required=True, | |
help="Path to the directory containing unet, vae, and scheduler subdirectories", | |
) | |
parser.add_argument( | |
"--video_path", type=str, help="Path to the input video file (first frame used)" | |
) | |
parser.add_argument("--image_path", type=str, help="Path to the input image file") | |
parser.add_argument("--seed", type=int, default="171198") | |
# Pipeline parameters | |
parser.add_argument( | |
"--num_inference_steps", type=int, default=40, help="Number of inference steps" | |
) | |
parser.add_argument( | |
"--num_images_per_prompt", | |
type=int, | |
default=1, | |
help="Number of images per prompt", | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
default=3, | |
help="Guidance scale for the pipeline", | |
) | |
parser.add_argument( | |
"--height", type=int, default=512, help="Height of the output video frames" | |
) | |
parser.add_argument( | |
"--width", type=int, default=768, help="Width of the output video frames" | |
) | |
parser.add_argument( | |
"--num_frames", | |
type=int, | |
default=121, | |
help="Number of frames to generate in the output video", | |
) | |
parser.add_argument( | |
"--frame_rate", type=int, default=25, help="Frame rate for the output video" | |
) | |
# Prompts | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
default='A man wearing a black leather jacket and blue jeans is riding a Harley Davidson motorcycle down a paved road. The man has short brown hair and is wearing a black helmet. The motorcycle is a dark red color with a large front fairing. The road is surrounded by green grass and trees. There is a gas station on the left side of the road with a red and white sign that says "Oil" and "Diner".', | |
help="Text prompt to guide generation", | |
) | |
parser.add_argument( | |
"--negative_prompt", | |
type=str, | |
default="worst quality, inconsistent motion, blurry, jittery, distorted", | |
help="Negative prompt for undesired features", | |
) | |
args = parser.parse_args() | |
# Paths for the separate mode directories | |
ckpt_dir = Path(args.ckpt_dir) | |
unet_dir = ckpt_dir / "unet" | |
vae_dir = ckpt_dir / "vae" | |
scheduler_dir = ckpt_dir / "scheduler" | |
# Load models | |
vae = load_vae(vae_dir) | |
unet = load_unet(unet_dir) | |
scheduler = load_scheduler(scheduler_dir) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
text_encoder = T5EncoderModel.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
).to("cuda") | |
tokenizer = T5Tokenizer.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" | |
) | |
# Use submodels for the pipeline | |
submodel_dict = { | |
"transformer": unet, | |
"patchifier": patchifier, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"scheduler": scheduler, | |
"vae": vae, | |
} | |
pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda") | |
# Load media (video or image) | |
if args.video_path: | |
media_items = load_video_to_tensor_with_resize( | |
args.video_path, args.height, args.width | |
).unsqueeze(0) | |
elif args.image_path: | |
media_items = load_image_to_tensor_with_resize( | |
args.image_path, args.height, args.width | |
) | |
else: | |
raise ValueError("Either --video_path or --image_path must be provided.") | |
# Prepare input for the pipeline | |
sample = { | |
"prompt": args.prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": args.negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": media_items, | |
} | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
generator = torch.Generator(device="cuda").manual_seed(args.seed) | |
images = pipeline( | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.num_images_per_prompt, | |
guidance_scale=args.guidance_scale, | |
generator=generator, | |
output_type="pt", | |
callback_on_step_end=None, | |
height=args.height, | |
width=args.width, | |
num_frames=args.num_frames, | |
frame_rate=args.frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.FIRST_FRAME, | |
).images | |
# Save output video | |
def get_unique_filename(base, ext, dir=".", index_range=1000): | |
for i in range(index_range): | |
filename = os.path.join(dir, f"{base}_{i}{ext}") | |
if not os.path.exists(filename): | |
return filename | |
raise FileExistsError( | |
f"Could not find a unique filename after {index_range} attempts." | |
) | |
for i in range(images.shape[0]): | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
fps = args.frame_rate | |
height, width = video_np.shape[1:3] | |
output_filename = get_unique_filename(f"video_output_{i}", ".mp4", ".") | |
out = cv2.VideoWriter( | |
output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
if __name__ == "__main__": | |
main() | |