LTX-Video-Playground / vae /layers /conv_nd_factory.py
Sapir's picture
inference working.
cef1afc
raw
history blame
2.1 kB
from typing import Tuple, Union
import torch
from vae.layers.dual_conv3d import DualConv3d
from vae.layers.causal_conv3d import CausalConv3d
def make_conv_nd(
dims: Union[int, Tuple[int, int]],
in_channels: int,
out_channels: int,
kernel_size: int,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
causal=False,
):
if dims == 2:
return torch.nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
elif dims == 3:
if causal:
return CausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
return torch.nn.Conv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
elif dims == (2, 1):
return DualConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
else:
raise ValueError(f"unsupported dimensions: {dims}")
def make_linear_nd(
dims: int,
in_channels: int,
out_channels: int,
bias=True,
):
if dims == 2:
return torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias)
elif dims == 3 or dims == (2, 1):
return torch.nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias)
else:
raise ValueError(f"unsupported dimensions: {dims}")