Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import json | |
import os | |
import pandas as pd | |
from sentence_transformers import CrossEncoder | |
import numpy as np | |
import re | |
from textwrap import dedent | |
import google.generativeai as genai | |
# Tool import | |
from crewai.tools.gemini_tools import GeminiSearchTools | |
from crewai.tools.mixtral_tools import MixtralSearchTools | |
from crewai.tools.zephyr_tools import ZephyrSearchTools | |
from crewai.tools.phi2_tools import Phi2SearchTools | |
# Google Langchain | |
from langchain_google_genai import GoogleGenerativeAI | |
#Crew imports | |
from crewai import Agent, Task, Crew, Process | |
# Retrieve API Key from Environment Variable | |
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY') | |
# Ensure the API key is available | |
if not GOOGLE_AI_STUDIO: | |
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.") | |
# Set gemini_llm | |
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO) | |
# CrewAI +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
def crewai_process_gemini(research_topic): | |
# Define your agents with roles and goals | |
GeminiAgent = Agent( | |
role='Summary Evaluator', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Skilled in running query evaluation""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
GeminiSearchTools.gemini_search | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Create a one paragraph summary of the {research_topic}""", | |
agent=GeminiAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[GeminiAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_mixtral_crazy(research_topic): | |
# Define your agents with roles and goals | |
MixtralCrazyAgent = Agent( | |
role='Summary Evaluator', | |
goal='Evaluate the summary using the HHEM-Victara Tuner', | |
backstory="""Skilled in running query evaluation""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
MixtralSearchTools.mixtral_crazy | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Create a one paragraph summary of the {research_topic}""", | |
agent=MixtralCrazyAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[MixtralCrazyAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_mixtral_normal(research_topic): | |
# Define your agents with roles and goals | |
MixtralNormalAgent = Agent( | |
role='Summary Evaluator', | |
goal='Evaluate the summary using the HHEM-Victara Tuner', | |
backstory="""Skilled in running query evaluation""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
MixtralSearchTools.mixtral_normal | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Create a one paragraph summary of the {research_topic}""", | |
agent=MixtralNormalAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[MixtralNormalAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_zephyr_normal(research_topic): | |
# Define your agents with roles and goals | |
ZephrNormalAgent = Agent( | |
role='Summary Evaluator', | |
goal='Evaluate the summary using the HHEM-Victara Tuner', | |
backstory="""Skilled in running query evaluation""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
ZephyrSearchTools.zephyr_normal | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Create a one paragraph summary of the {research_topic}""", | |
agent=ZephrNormalAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[ZephrNormalAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_phi2(research_topic): | |
# Define your agents with roles and goals | |
Phi2Agent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='Evaluate the summary using the HHEM-Victara Tuner', | |
backstory="""Skilled in running query evaluation""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
Phi2SearchTools.phi2_search | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Create a one paragraph summary of the {research_topic}""", | |
agent=Phi2Agent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[Phi2Agent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
# Initialize the HHEM model +++++++++++++++++++++++++++++++++++++++++++++++ | |
model = CrossEncoder('vectara/hallucination_evaluation_model') | |
# Function to compute HHEM scores | |
def compute_hhem_scores(texts, summary): | |
pairs = [[text, summary] for text in texts] | |
scores = model.predict(pairs) | |
return scores | |
# Define the Vectara query function | |
def vectara_query(query: str, config: dict): | |
corpus_key = [{ | |
"customerId": config["customer_id"], | |
"corpusId": config["corpus_id"], | |
"lexicalInterpolationConfig": {"lambda": config.get("lambda_val", 0.5)}, | |
}] | |
data = { | |
"query": [{ | |
"query": query, | |
"start": 0, | |
"numResults": config.get("top_k", 10), | |
"contextConfig": { | |
"sentencesBefore": 2, | |
"sentencesAfter": 2, | |
}, | |
"corpusKey": corpus_key, | |
"summary": [{ | |
"responseLang": "eng", | |
"maxSummarizedResults": 5, | |
}] | |
}] | |
} | |
headers = { | |
"x-api-key": config["api_key"], | |
"customer-id": config["customer_id"], | |
"Content-Type": "application/json", | |
} | |
response = requests.post( | |
headers=headers, | |
url="https://api.vectara.io/v1/query", | |
data=json.dumps(data), | |
) | |
if response.status_code != 200: | |
st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})") | |
return [], "" | |
result = response.json() | |
responses = result["responseSet"][0]["response"] | |
summary = result["responseSet"][0]["summary"][0]["text"] | |
res = [[r['text'], r['score']] for r in responses] | |
return res, summary | |
# Create the main app with three tabs | |
tab1, tab2, tab3, tab4 = st.tabs(["Synthetic Data", "Data Query", "HHEM-Victara Query Tuner", "Model Evaluation"]) | |
with tab1: | |
# Create two columns, the first for the image, the second for the text and button | |
col1, col2 = st.columns([1, 2]) # Adjust the ratio as needed for your layout | |
# In the first column, add your image | |
with col1: | |
st.image("path_or_url_to_your_image", caption="Synthetic Data Visualization") | |
# In the second column, add your header and link button | |
with col2: | |
st.header("Synthetic Data") | |
st.link_button("Create Synthetic Medical Data", "https://chat.openai.com/g/g-XyHciw52w-synthetic-clinical-data") | |
with tab2: | |
st.header("Data Query") | |
st.link_button("Query & Summarize Data", "https://chat.openai.com/g/g-9tWqg4gRY-explore-summarize-medical-data") | |
with tab3: | |
st.header("HHEM-Victara Query Tuner") | |
# User inputs | |
query = st.text_area("Enter your text for query tuning", "", height=100) | |
lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5) | |
top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10) | |
if st.button("Query Vectara"): | |
config = { | |
"api_key": os.environ.get("VECTARA_API_KEY", ""), | |
"customer_id": os.environ.get("VECTARA_CUSTOMER_ID", ""), | |
"corpus_id": os.environ.get("VECTARA_CORPUS_ID", ""), | |
"lambda_val": lambda_val, | |
"top_k": top_k, | |
} | |
results, summary = vectara_query(query, config) | |
if results: | |
st.subheader("Summary") | |
st.write(summary) | |
st.subheader("Top Results") | |
# Extract texts from results | |
texts = [r[0] for r in results[:5]] | |
# Compute HHEM scores | |
scores = compute_hhem_scores(texts, summary) | |
# Prepare and display the dataframe | |
df = pd.DataFrame({'Fact': texts, 'HHEM Score': scores}) | |
st.dataframe(df) | |
else: | |
st.write("No results found.") | |
with tab4: | |
st.header("Model Evaluation") | |
# User input for the research topic | |
research_topic = st.text_area('Enter your research topic:', '', height=100) | |
# Selection box for the function to execute | |
process_selection = st.selectbox( | |
'Choose the process to run:', | |
('crewai_process_gemini', 'crewai_process_mixtral_crazy', 'crewai_process_mixtral_normal', 'crewai_process_zephyr_normal', 'crewai_process_phi2') | |
) | |
# Button to execute the chosen function | |
if st.button('Run Process'): | |
if research_topic: # Ensure there's a topic provided | |
if process_selection == 'crewai_process_gemini': | |
result = crewai_process_gemini(research_topic) | |
elif process_selection == 'crewai_process_mixtral_crazy': | |
result = crewai_process_mixtral_crazy(research_topic) | |
elif process_selection == 'crewai_process_mixtral_normal': | |
result = crewai_process_mixtral_normal(research_topic) | |
elif process_selection == 'crewai_process_zephyr_normal': | |
result = crewai_process_zephyr_normal(research_topic) | |
elif process_selection == 'crewai_process_phi2': | |
result = crewai_process_phi2(research_topic) | |
st.write(result) | |
else: | |
st.warning('Please enter a research topic.') | |