Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import json | |
import os | |
import pandas as pd | |
from sentence_transformers import CrossEncoder | |
import numpy as np | |
import re | |
from textwrap import dedent | |
import google.generativeai as genai | |
# Tool import | |
from crewai.tools.gemini_tools import GeminiSearchTools | |
from crewai.tools.mixtral_tools import MixtralSearchTools | |
from crewai.tools.zephyr_tools import ZephyrSearchTools | |
from crewai.tools.phi2_tools import Phi2SearchTools | |
# Google Langchain | |
from langchain_google_genai import GoogleGenerativeAI | |
#Crew imports | |
from crewai import Agent, Task, Crew, Process | |
# Retrieve API Key from Environment Variable | |
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY') | |
# Ensure the API key is available | |
if not GOOGLE_AI_STUDIO: | |
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.") | |
# Set gemini_llm | |
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO) | |
# CrewAI +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
def crewai_process_gemini(research_topic): | |
# Define your agents with roles and goals | |
GeminiAgent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Emily is a 28-year-old graphic designer. She has always struggled with social anxiety, | |
making it difficult for her to participate in group settings. She joined the therapy group to improve | |
her social skills and manage her anxiety. You are able to discuss a variety of mental health issues.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
GeminiSearchTools.gemini_search | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Introduction yourself and describe your current mood and any significant events from the week affecting their mental state. | |
""", | |
agent=GeminiAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[GeminiAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_mixtral_crazy(research_topic): | |
# Define your agents with roles and goals | |
MixtralCrazyAgent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Emily is a 28-year-old graphic designer. She has always struggled with social anxiety, | |
making it difficult for her to participate in group settings. She joined the therapy group to improve | |
her social skills and manage her anxiety. You are able to discuss a variety of mental health issues.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
MixtralSearchTools.mixtral_crazy | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Introduction yourself and describe your current mood and any significant events from the week affecting their mental state. | |
""", | |
agent=MixtralCrazyAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[MixtralCrazyAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_mixtral_normal(research_topic): | |
# Define your agents with roles and goals | |
MixtralNormalAgent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Emily is a 28-year-old graphic designer. She has always struggled with social anxiety, | |
making it difficult for her to participate in group settings. She joined the therapy group to improve | |
her social skills and manage her anxiety. You are able to discuss a variety of mental health issues.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
MixtralSearchTools.mixtral_normal | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Introduction yourself and describe your current mood and any significant events from the week affecting their mental state. | |
""", | |
agent=MixtralNormalAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[MixtralNormalAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_zephyr_normal(research_topic): | |
# Define your agents with roles and goals | |
ZephrNormalAgent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Emily is a 28-year-old graphic designer. She has always struggled with social anxiety, | |
making it difficult for her to participate in group settings. She joined the therapy group to improve | |
her social skills and manage her anxiety. You are able to discuss a variety of mental health issues.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
ZephyrSearchTools.zephyr_normal | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Introduction yourself and describe your current mood and any significant events from the week affecting their mental state. | |
""", | |
agent=ZephrNormalAgent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[ZephrNormalAgent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
def crewai_process_phi2(research_topic): | |
# Define your agents with roles and goals | |
Phi2Agent = Agent( | |
role='Emily Mental Patient Graphic Designer Anxiety', | |
goal='To learn how to manage her anxiety in social situations through group therapy.', | |
backstory="""Emily is a 28-year-old graphic designer. She has always struggled with social anxiety, | |
making it difficult for her to participate in group settings. She joined the therapy group to improve | |
her social skills and manage her anxiety. You are able to discuss a variety of mental health issues.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
Phi2SearchTools.phi2_search | |
] | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Introduction yourself and describe your current mood and any significant events from the week affecting their mental state. | |
""", | |
agent=Phi2Agent | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[Phi2Agent], | |
tasks=[task1], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
# Credentials ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
corpus_id = os.environ['VECTARA_CORPUS_ID'] | |
customer_id = os.environ['VECTARA_CUSTOMER_ID'] | |
api_key = os.environ['VECTARA_API_KEY'] | |
# Get Data +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
def get_post_headers() -> dict: | |
"""Returns headers that should be attached to each post request.""" | |
return { | |
"x-api-key": api_key, | |
"customer-id": customer_id, | |
"Content-Type": "application/json", | |
} | |
def query_vectara(query: str, filter_str="", lambda_val=0.0) -> str: | |
corpus_key = { | |
"customerId": customer_id, | |
"corpusId": corpus_id, | |
"lexicalInterpolationConfig": {"lambda": lambda_val}, | |
} | |
if filter_str: | |
corpus_key["metadataFilter"] = filter_str | |
data = { | |
"query": [ | |
{ | |
"query": query, | |
"start": 0, | |
"numResults": 10, | |
"contextConfig": { | |
"sentencesBefore": 2, | |
"sentencesAfter": 2 | |
}, | |
"corpusKey": [corpus_key], | |
"summary": [ | |
{ | |
"responseLang": "eng", | |
"maxSummarizedResults": 5, | |
"summarizerPromptName": "vectara-summary-ext-v1.2.0" | |
}, | |
] | |
} | |
] | |
} | |
response = requests.post( | |
"https://api.vectara.io/v1/query", | |
headers=get_post_headers(), | |
data=json.dumps(data), | |
timeout=130, | |
) | |
if response.status_code != 200: | |
st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})") | |
return "" | |
result = response.json() | |
answer = result["responseSet"][0]["summary"][0]["text"] | |
return re.sub(r'\[\d+(,\d+){0,5}\]', '', answer) | |
# Initialize the HHEM model +++++++++++++++++++++++++++++++++++++++++++++++ | |
model = CrossEncoder('vectara/hallucination_evaluation_model') | |
# Function to compute HHEM scores | |
def compute_hhem_scores(texts, summary): | |
pairs = [[text, summary] for text in texts] | |
scores = model.predict(pairs) | |
return scores | |
# Define the Vectara query function | |
def vectara_query(query: str, config: dict): | |
corpus_key = [{ | |
"customerId": config["customer_id"], | |
"corpusId": config["corpus_id"], | |
"lexicalInterpolationConfig": {"lambda": config.get("lambda_val", 0.5)}, | |
}] | |
data = { | |
"query": [{ | |
"query": query, | |
"start": 0, | |
"numResults": config.get("top_k", 10), | |
"contextConfig": { | |
"sentencesBefore": 2, | |
"sentencesAfter": 2, | |
}, | |
"corpusKey": corpus_key, | |
"summary": [{ | |
"responseLang": "eng", | |
"maxSummarizedResults": 5, | |
}] | |
}] | |
} | |
headers = { | |
"x-api-key": config["api_key"], | |
"customer-id": config["customer_id"], | |
"Content-Type": "application/json", | |
} | |
response = requests.post( | |
headers=headers, | |
url="https://api.vectara.io/v1/query", | |
data=json.dumps(data), | |
) | |
if response.status_code != 200: | |
st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})") | |
return [], "" | |
result = response.json() | |
responses = result["responseSet"][0]["response"] | |
summary = result["responseSet"][0]["summary"][0]["text"] | |
res = [[r['text'], r['score']] for r in responses] | |
return res, summary | |
# Create the main app with three tabs | |
tab1, tab2, tab3, tab4 = st.tabs(["Synthetic Data", "Data Query", "HHEM-Victara Query Tuner", "Model Evaluation"]) | |
with tab1: | |
st.header("Synthetic Data") | |
st.link_button("Create Synthetic Medical Data", "https://chat.openai.com/g/g-XyHciw52w-synthetic-clinical-data") | |
with tab2: | |
st.header("Data Query") | |
st.link_button("Query & Summarize Data", "https://chat.openai.com/g/g-9tWqg4gRY-explore-summarize-medical-data") | |
with tab3: | |
st.header("HHEM-Victara Query Tuner") | |
# User inputs | |
query = st.text_area("Enter your text for query tuning", "", height=75) | |
lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5) | |
top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10) | |
if st.button("Query Vectara"): | |
config = { | |
"api_key": os.environ.get("VECTARA_API_KEY", ""), | |
"customer_id": os.environ.get("VECTARA_CUSTOMER_ID", ""), | |
"corpus_id": os.environ.get("VECTARA_CORPUS_ID", ""), | |
"lambda_val": lambda_val, | |
"top_k": top_k, | |
} | |
results, summary = vectara_query(query, config) | |
if results: | |
st.subheader("Summary") | |
st.write(summary) | |
st.subheader("Top Results") | |
# Extract texts from results | |
texts = [r[0] for r in results[:5]] | |
# Compute HHEM scores | |
scores = compute_hhem_scores(texts, summary) | |
# Prepare and display the dataframe | |
df = pd.DataFrame({'Fact': texts, 'HHEM Score': scores}) | |
st.dataframe(df) | |
else: | |
st.write("No results found.") | |
with tab4: | |
st.header("Model Evaluation") | |