import streamlit as st import torch import torch.nn as nn from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class Net(nn.Module): def __init__(self): super(Net,self).__init__() self.layer = nn.Sequential( nn.Linear(768, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 8), ) def forward(self,x): return self.layer(x) @st.cache def GetModel(): model = Net() model.load_state_dict(torch.load('model.dat', map_location=torch.device('cpu'))) return model @st.cache(allow_output_mutation=True) def GetModelAndTokenizer(): model = GetModel() tokenizer = AutoTokenizer.from_pretrained("Callidior/bert2bert-base-arxiv-titlegen") model_emb = AutoModelForSeq2SeqLM.from_pretrained("Callidior/bert2bert-base-arxiv-titlegen") return model, tokenizer, model_emb def BuildAnswer(txt): def get_hidden_states(encoded, model): with torch.no_grad(): output = model(decoder_input_ids=encoded['input_ids'], output_hidden_states=True, **encoded) layers = [-4, -3, -2, -1] states = output['decoder_hidden_states'] output = torch.stack([states[i] for i in layers]).sum(0).squeeze() return output.mean(dim=0) def get_word_vector(sent, tokenizer, model): encoded = tokenizer.encode_plus(sent, return_tensors="pt", truncation=True) return get_hidden_states(encoded, model) labels_articles = { 1: 'Computer Science', 2: 'Economics', 3: "Electrical Engineering And Systems Science", 4: "Mathematics", 5: "Physics", 6: "Quantitative Biology", 7: "Quantitative Finance", 8: "Statistics" } txt = txt.strip() if txt == '': return '' model, tokenizer, model_emb = GetModelAndTokenizer() embed = get_word_vector(txt, tokenizer, model_emb) logits = torch.nn.functional.softmax(model(embed), dim=0) best_tags = torch.argsort(logits, descending=True) sum = 0 result = [] for tag in best_tags: if sum > 0.95: break sum += logits[tag.item()] res = round(float(logits[tag.item()].cpu()) * 100) label = labels_articles[tag.item() + 1] result.append(f'{res:3d}% - {label}') return result st.markdown("### Hello, world!") st.markdown("", unsafe_allow_html=True) # ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter title = st.text_area("Title:") abstract = st.text_area("Abstract:", height=400) #from transformers import pipeline #pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") #raw_predictions = pipe(text) # тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost result = BuildAnswer(title + ' ' + abstract) for res in result: st.markdown(f"{res}")