File size: 34,134 Bytes
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
 
38dbec8
 
 
 
4d8c3d6
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
 
38dbec8
 
 
 
 
 
 
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
 
 
38dbec8
 
4d8c3d6
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
 
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
 
 
 
 
4d8c3d6
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
38dbec8
 
 
4d8c3d6
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
 
 
 
 
38dbec8
4d8c3d6
 
 
 
 
38dbec8
 
 
 
 
 
 
64fccd8
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
import os
from contextlib import nullcontext
from dataclasses import dataclass, field
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from jaxtyping import Float
from omegaconf import OmegaConf
from PIL import Image
from safetensors.torch import load_file, load_model
from torch import Tensor

from spar3d.models.diffusion.gaussian_diffusion import (
    SpacedDiffusion,
    get_named_beta_schedule,
    space_timesteps,
)
from spar3d.models.diffusion.sampler import PointCloudSampler
from spar3d.models.isosurface import MarchingTetrahedraHelper
from spar3d.models.mesh import Mesh
from spar3d.models.utils import (
    BaseModule,
    ImageProcessor,
    convert_data,
    dilate_fill,
    find_class,
    float32_to_uint8_np,
    normalize,
    scale_tensor,
)
from spar3d.utils import (
    create_intrinsic_from_fov_rad,
    default_cond_c2w,
    get_device,
    normalize_pc_bbox,
)

try:
    from texture_baker import TextureBaker
except ImportError:
    import logging

    logging.warning(
        "Could not import texture_baker. Please install it via `pip install texture-baker/`"
    )
    # Exit early to avoid further errors
    raise ImportError("texture_baker not found")


class SPAR3D(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        cond_image_size: int
        isosurface_resolution: int
        isosurface_threshold: float = 10.0
        radius: float = 1.0
        background_color: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
        default_fovy_rad: float = 0.591627
        default_distance: float = 2.2

        camera_embedder_cls: str = ""
        camera_embedder: dict = field(default_factory=dict)

        image_tokenizer_cls: str = ""
        image_tokenizer: dict = field(default_factory=dict)

        point_embedder_cls: str = ""
        point_embedder: dict = field(default_factory=dict)

        tokenizer_cls: str = ""
        tokenizer: dict = field(default_factory=dict)

        backbone_cls: str = ""
        backbone: dict = field(default_factory=dict)

        post_processor_cls: str = ""
        post_processor: dict = field(default_factory=dict)

        decoder_cls: str = ""
        decoder: dict = field(default_factory=dict)

        image_estimator_cls: str = ""
        image_estimator: dict = field(default_factory=dict)

        global_estimator_cls: str = ""
        global_estimator: dict = field(default_factory=dict)

        # Point diffusion modules
        pdiff_camera_embedder_cls: str = ""
        pdiff_camera_embedder: dict = field(default_factory=dict)

        pdiff_image_tokenizer_cls: str = ""
        pdiff_image_tokenizer: dict = field(default_factory=dict)

        pdiff_backbone_cls: str = ""
        pdiff_backbone: dict = field(default_factory=dict)

        scale_factor_xyz: float = 1.0
        scale_factor_rgb: float = 1.0
        bias_xyz: float = 0.0
        bias_rgb: float = 0.0
        train_time_steps: int = 1024
        inference_time_steps: int = 64

        mean_type: str = "epsilon"
        var_type: str = "fixed_small"
        diffu_sched: str = "cosine"
        diffu_sched_exp: float = 12.0
        guidance_scale: float = 3.0
        sigma_max: float = 120.0
        s_churn: float = 3.0

        low_vram_mode: bool = False

    cfg: Config

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: str,
        config_name: str,
        weight_name: str,
        low_vram_mode: bool = False,
    ):
        base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
        if os.path.isdir(os.path.join(base_dir, pretrained_model_name_or_path)):
            config_path = os.path.join(
                base_dir, pretrained_model_name_or_path, config_name
            )
            weight_path = os.path.join(
                base_dir, pretrained_model_name_or_path, weight_name
            )
        else:
            config_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=config_name
            )
            weight_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=weight_name
            )

        cfg = OmegaConf.load(config_path)
        OmegaConf.resolve(cfg)
        # Add in low_vram_mode to the config
        if os.environ.get("SPAR3D_LOW_VRAM", "0") == "1" and torch.cuda.is_available():
            cfg.low_vram_mode = True
        else:
            cfg.low_vram_mode = low_vram_mode if torch.cuda.is_available() else False
        model = cls(cfg)

        if not model.cfg.low_vram_mode:
            load_model(model, weight_path, strict=False)
        else:
            model._state_dict = load_file(weight_path, device="cpu")

        return model

    @property
    def device(self):
        return next(self.parameters()).device

    def configure(self):
        # Initialize all modules as None
        self.image_tokenizer = None
        self.point_embedder = None
        self.tokenizer = None
        self.camera_embedder = None
        self.backbone = None
        self.post_processor = None
        self.decoder = None
        self.image_estimator = None
        self.global_estimator = None
        self.pdiff_image_tokenizer = None
        self.pdiff_camera_embedder = None
        self.pdiff_backbone = None
        self.diffusion_spaced = None
        self.sampler = None

        # Dummy parameter to safe the device placement for dynamic loading
        self.dummy_param = torch.nn.Parameter(torch.tensor(0.0))

        channel_scales = [self.cfg.scale_factor_xyz] * 3
        channel_scales += [self.cfg.scale_factor_rgb] * 3
        channel_biases = [self.cfg.bias_xyz] * 3
        channel_biases += [self.cfg.bias_rgb] * 3
        channel_scales = np.array(channel_scales)
        channel_biases = np.array(channel_biases)

        betas = get_named_beta_schedule(
            self.cfg.diffu_sched, self.cfg.train_time_steps, self.cfg.diffu_sched_exp
        )

        self.diffusion_kwargs = dict(
            betas=betas,
            model_mean_type=self.cfg.mean_type,
            model_var_type=self.cfg.var_type,
            channel_scales=channel_scales,
            channel_biases=channel_biases,
        )

        self.is_low_vram = self.cfg.low_vram_mode and get_device() == "cuda"

        # Create CPU shadow copy if in low VRAM mode
        if not self.is_low_vram:
            self._load_all_modules()
        else:
            print("Loading in low VRAM mode")

        self.bbox: Float[Tensor, "2 3"]
        self.register_buffer(
            "bbox",
            torch.as_tensor(
                [
                    [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
                    [self.cfg.radius, self.cfg.radius, self.cfg.radius],
                ],
                dtype=torch.float32,
            ),
        )
        self.isosurface_helper = MarchingTetrahedraHelper(
            self.cfg.isosurface_resolution,
            os.path.join(
                os.path.dirname(__file__),
                "..",
                "load",
                "tets",
                f"{self.cfg.isosurface_resolution}_tets.npz",
            ),
        )

        self.baker = TextureBaker()
        self.image_processor = ImageProcessor()

    def _load_all_modules(self):
        """Load all modules into memory"""
        # Load modules to specified device
        self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
            self.cfg.image_tokenizer
        ).to(self.device)
        self.point_embedder = find_class(self.cfg.point_embedder_cls)(
            self.cfg.point_embedder
        ).to(self.device)
        self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
            self.device
        )
        self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
            self.cfg.camera_embedder
        ).to(self.device)
        self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(
            self.device
        )
        self.post_processor = find_class(self.cfg.post_processor_cls)(
            self.cfg.post_processor
        ).to(self.device)
        self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(
            self.device
        )
        self.image_estimator = find_class(self.cfg.image_estimator_cls)(
            self.cfg.image_estimator
        ).to(self.device)
        self.global_estimator = find_class(self.cfg.global_estimator_cls)(
            self.cfg.global_estimator
        ).to(self.device)
        self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
            self.cfg.pdiff_image_tokenizer
        ).to(self.device)
        self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
            self.cfg.pdiff_camera_embedder
        ).to(self.device)
        self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
            self.cfg.pdiff_backbone
        ).to(self.device)

        self.diffusion_spaced = SpacedDiffusion(
            use_timesteps=space_timesteps(
                self.cfg.train_time_steps,
                "ddim" + str(self.cfg.inference_time_steps),
            ),
            **self.diffusion_kwargs,
        )
        self.sampler = PointCloudSampler(
            model=self.pdiff_backbone,
            diffusion=self.diffusion_spaced,
            num_points=512,
            point_dim=6,
            guidance_scale=self.cfg.guidance_scale,
            clip_denoised=True,
            sigma_min=1e-3,
            sigma_max=self.cfg.sigma_max,
            s_churn=self.cfg.s_churn,
        )

    def _load_main_modules(self):
        """Load the main processing modules"""
        if all(
            [
                self.image_tokenizer,
                self.point_embedder,
                self.tokenizer,
                self.camera_embedder,
                self.backbone,
                self.post_processor,
                self.decoder,
            ]
        ):
            return  # Main modules already loaded

        device = next(self.parameters()).device  # Get the current device

        self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
            self.cfg.image_tokenizer
        ).to(device)
        self.point_embedder = find_class(self.cfg.point_embedder_cls)(
            self.cfg.point_embedder
        ).to(device)
        self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
            device
        )
        self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
            self.cfg.camera_embedder
        ).to(device)
        self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(device)
        self.post_processor = find_class(self.cfg.post_processor_cls)(
            self.cfg.post_processor
        ).to(device)
        self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(device)

        # Restore weights if we have a checkpoint path
        if hasattr(self, "_state_dict"):
            self.load_state_dict(self._state_dict, strict=False)

    def _load_estimator_modules(self):
        """Load the estimator modules"""
        if all([self.image_estimator, self.global_estimator]):
            return  # Estimator modules already loaded

        device = next(self.parameters()).device  # Get the current device

        self.image_estimator = find_class(self.cfg.image_estimator_cls)(
            self.cfg.image_estimator
        ).to(device)
        self.global_estimator = find_class(self.cfg.global_estimator_cls)(
            self.cfg.global_estimator
        ).to(device)

        # Restore weights if we have a checkpoint path
        if hasattr(self, "_state_dict"):
            self.load_state_dict(self._state_dict, strict=False)

    def _load_pdiff_modules(self):
        """Load only the point diffusion modules"""
        if all(
            [
                self.pdiff_image_tokenizer,
                self.pdiff_camera_embedder,
                self.pdiff_backbone,
            ]
        ):
            return  # PDiff modules already loaded

        device = next(self.parameters()).device  # Get the current device

        self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
            self.cfg.pdiff_image_tokenizer
        ).to(device)
        self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
            self.cfg.pdiff_camera_embedder
        ).to(device)
        self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
            self.cfg.pdiff_backbone
        ).to(device)

        self.diffusion_spaced = SpacedDiffusion(
            use_timesteps=space_timesteps(
                self.cfg.train_time_steps,
                "ddim" + str(self.cfg.inference_time_steps),
            ),
            **self.diffusion_kwargs,
        )
        self.sampler = PointCloudSampler(
            model=self.pdiff_backbone,
            diffusion=self.diffusion_spaced,
            num_points=512,
            point_dim=6,
            guidance_scale=self.cfg.guidance_scale,
            clip_denoised=True,
            sigma_min=1e-3,
            sigma_max=self.cfg.sigma_max,
            s_churn=self.cfg.s_churn,
        )

        # Restore weights if we have a checkpoint path
        if hasattr(self, "_state_dict"):
            self.load_state_dict(self._state_dict, strict=False)

    def _unload_pdiff_modules(self):
        """Unload point diffusion modules to free memory"""
        self.pdiff_image_tokenizer = None
        self.pdiff_camera_embedder = None
        self.pdiff_backbone = None
        self.diffusion_spaced = None
        self.sampler = None
        torch.cuda.empty_cache()

    def _unload_main_modules(self):
        """Unload main processing modules to free memory"""
        self.image_tokenizer = None
        self.point_embedder = None
        self.tokenizer = None
        self.camera_embedder = None
        self.backbone = None
        self.post_processor = None
        torch.cuda.empty_cache()

    def _unload_estimator_modules(self):
        """Unload estimator modules to free memory"""
        self.image_estimator = None
        self.global_estimator = None
        torch.cuda.empty_cache()

    def triplane_to_meshes(
        self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
    ) -> list[Mesh]:
        meshes = []
        for i in range(triplanes.shape[0]):
            triplane = triplanes[i]
            grid_vertices = scale_tensor(
                self.isosurface_helper.grid_vertices.to(triplanes.device),
                self.isosurface_helper.points_range,
                self.bbox,
            )

            values = self.query_triplane(grid_vertices, triplane)
            decoded = self.decoder(values, include=["vertex_offset", "density"])
            sdf = decoded["density"] - self.cfg.isosurface_threshold

            deform = decoded["vertex_offset"].squeeze(0)

            mesh: Mesh = self.isosurface_helper(
                sdf.view(-1, 1), deform.view(-1, 3) if deform is not None else None
            )
            mesh.v_pos = scale_tensor(
                mesh.v_pos, self.isosurface_helper.points_range, self.bbox
            )

            meshes.append(mesh)

        return meshes

    def query_triplane(
        self,
        positions: Float[Tensor, "*B N 3"],
        triplanes: Float[Tensor, "*B 3 Cp Hp Wp"],
    ) -> Float[Tensor, "*B N F"]:
        batched = positions.ndim == 3
        if not batched:
            # no batch dimension
            triplanes = triplanes[None, ...]
            positions = positions[None, ...]
        assert triplanes.ndim == 5 and positions.ndim == 3

        positions = scale_tensor(
            positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
        )

        indices2D: Float[Tensor, "B 3 N 2"] = torch.stack(
            (positions[..., [0, 1]], positions[..., [0, 2]], positions[..., [1, 2]]),
            dim=-3,
        ).to(triplanes.dtype)
        out: Float[Tensor, "B3 Cp 1 N"] = F.grid_sample(
            rearrange(triplanes, "B Np Cp Hp Wp -> (B Np) Cp Hp Wp", Np=3).float(),
            rearrange(indices2D, "B Np N Nd -> (B Np) () N Nd", Np=3).float(),
            align_corners=True,
            mode="bilinear",
        )
        out = rearrange(out, "(B Np) Cp () N -> B N (Np Cp)", Np=3)

        return out

    def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
        if self.is_low_vram:
            self._unload_pdiff_modules()
            self._unload_estimator_modules()
            self._load_main_modules()

        # if batch[rgb_cond] is only one view, add a view dimension
        if len(batch["rgb_cond"].shape) == 4:
            batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
            batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
            batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
            batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
            batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)

        batch_size, n_input_views = batch["rgb_cond"].shape[:2]

        camera_embeds: Optional[Float[Tensor, "B Nv Cc"]]
        camera_embeds = self.camera_embedder(**batch)

        pc_embeds = self.point_embedder(batch["pc_cond"])

        input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.image_tokenizer(
            rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
            modulation_cond=camera_embeds,
        )

        input_image_tokens = rearrange(
            input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
        )

        tokens: Float[Tensor, "B Ct Nt"] = self.tokenizer(batch_size)

        cross_tokens = input_image_tokens
        cross_tokens = torch.cat([cross_tokens, pc_embeds], dim=1)

        tokens = self.backbone(
            tokens,
            encoder_hidden_states=cross_tokens,
            modulation_cond=None,
        )

        direct_codes = self.tokenizer.detokenize(tokens)
        scene_codes = self.post_processor(direct_codes)

        return scene_codes, direct_codes

    def forward_pdiff_cond(self, batch: Dict[str, Any]) -> Dict[str, Any]:
        if self.is_low_vram:
            self._unload_main_modules()
            self._unload_estimator_modules()
            self._load_pdiff_modules()

        if len(batch["rgb_cond"].shape) == 4:
            batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
            batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
            batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
            batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
            batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)

        _batch_size, n_input_views = batch["rgb_cond"].shape[:2]

        # Camera modulation
        camera_embeds: Float[Tensor, "B Nv Cc"] = self.pdiff_camera_embedder(**batch)

        input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.pdiff_image_tokenizer(
            rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
            modulation_cond=camera_embeds,
        )

        input_image_tokens = rearrange(
            input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
        )

        return input_image_tokens

    def run_image(
        self,
        image: Union[Image.Image, List[Image.Image]],
        bake_resolution: int,
        pointcloud: Optional[Union[List[np.ndarray], np.ndarray, Tensor]] = None,
        remesh: Literal["none", "triangle", "quad"] = "none",
        vertex_count: int = -1,
        estimate_illumination: bool = False,
        return_points: bool = False,
    ) -> Tuple[Union[trimesh.Trimesh, List[trimesh.Trimesh]], dict[str, Any]]:
        if isinstance(image, list):
            rgb_cond = []
            mask_cond = []
            for img in image:
                mask, rgb = self.prepare_image(img)
                mask_cond.append(mask)
                rgb_cond.append(rgb)
            rgb_cond = torch.stack(rgb_cond, 0)
            mask_cond = torch.stack(mask_cond, 0)
            batch_size = rgb_cond.shape[0]
        else:
            mask_cond, rgb_cond = self.prepare_image(image)
            batch_size = 1

        c2w_cond = default_cond_c2w(self.cfg.default_distance).to(self.device)
        intrinsic, intrinsic_normed_cond = create_intrinsic_from_fov_rad(
            self.cfg.default_fovy_rad,
            self.cfg.cond_image_size,
            self.cfg.cond_image_size,
        )

        batch = {
            "rgb_cond": rgb_cond,
            "mask_cond": mask_cond,
            "c2w_cond": c2w_cond.view(1, 1, 4, 4).repeat(batch_size, 1, 1, 1),
            "intrinsic_cond": intrinsic.to(self.device)
            .view(1, 1, 3, 3)
            .repeat(batch_size, 1, 1, 1),
            "intrinsic_normed_cond": intrinsic_normed_cond.to(self.device)
            .view(1, 1, 3, 3)
            .repeat(batch_size, 1, 1, 1),
        }

        meshes, global_dict = self.generate_mesh(
            batch,
            bake_resolution,
            pointcloud,
            remesh,
            vertex_count,
            estimate_illumination,
        )

        if return_points:
            point_clouds = []
            for i in range(batch_size):
                xyz = batch["pc_cond"][i, :, :3].cpu().numpy()
                color_rgb = (
                    (batch["pc_cond"][i, :, 3:6] * 255).cpu().numpy().astype(np.uint8)
                )
                pc_trimesh = trimesh.PointCloud(vertices=xyz, colors=color_rgb)
                point_clouds.append(pc_trimesh)
            global_dict["point_clouds"] = point_clouds

        if batch_size == 1:
            return meshes[0], global_dict
        else:
            return meshes, global_dict

    def prepare_image(self, image):
        if image.mode != "RGBA":
            raise ValueError("Image must be in RGBA mode")
        img_cond = (
            torch.from_numpy(
                np.asarray(
                    image.resize((self.cfg.cond_image_size, self.cfg.cond_image_size))
                ).astype(np.float32)
                / 255.0
            )
            .float()
            .clip(0, 1)
            .to(self.device)
        )
        mask_cond = img_cond[:, :, -1:]
        rgb_cond = torch.lerp(
            torch.tensor(self.cfg.background_color, device=self.device)[None, None, :],
            img_cond[:, :, :3],
            mask_cond,
        )

        return mask_cond, rgb_cond

    def generate_mesh(
        self,
        batch,
        bake_resolution: int,
        pointcloud: Optional[Union[List[float], np.ndarray, Tensor]] = None,
        remesh: Literal["none", "triangle", "quad"] = "none",
        vertex_count: int = -1,
        estimate_illumination: bool = False,
    ) -> Tuple[List[trimesh.Trimesh], dict[str, Any]]:
        batch["rgb_cond"] = self.image_processor(
            batch["rgb_cond"], self.cfg.cond_image_size
        )
        batch["mask_cond"] = self.image_processor(
            batch["mask_cond"], self.cfg.cond_image_size
        )

        batch_size = batch["rgb_cond"].shape[0]

        if pointcloud is not None:
            if isinstance(pointcloud, list):
                cond_tensor = torch.tensor(pointcloud).float().cuda().view(-1, 6)
                xyz = cond_tensor[:, :3]
                color_rgb = cond_tensor[:, 3:]
            # Check if point cloud is a numpy array
            elif isinstance(pointcloud, np.ndarray):
                xyz = torch.tensor(pointcloud[:, :3]).float().cuda()
                color_rgb = torch.tensor(pointcloud[:, 3:]).float().cuda()
            else:
                raise ValueError("Invalid point cloud type")

            pointcloud = torch.cat([xyz, color_rgb], dim=-1).unsqueeze(0)
            batch["pc_cond"] = pointcloud

        if "pc_cond" not in batch:
            cond_tokens = self.forward_pdiff_cond(batch)
            sample_iter = self.sampler.sample_batch_progressive(
                batch_size, cond_tokens, device=self.device
            )
            for x in sample_iter:
                samples = x["xstart"]

            denoised_pc = samples.permute(0, 2, 1).float()  # [B, C, N] -> [B, N, C]
            denoised_pc = normalize_pc_bbox(denoised_pc)

            # predict the full 3D conditioned on the denoised point cloud
            batch["pc_cond"] = denoised_pc

        scene_codes, non_postprocessed_codes = self.get_scene_codes(batch)

        # Create a rotation matrix for the final output domain
        rotation = trimesh.transformations.rotation_matrix(np.radians(-90), [1, 0, 0])
        rotation2 = trimesh.transformations.rotation_matrix(np.radians(90), [0, 1, 0])
        output_rotation = rotation2 @ rotation

        global_dict = {}
        if self.is_low_vram:
            self._unload_pdiff_modules()
            self._unload_main_modules()
            self._load_estimator_modules()

        if self.image_estimator is not None:
            global_dict.update(
                self.image_estimator(
                    torch.cat([batch["rgb_cond"], batch["mask_cond"]], dim=-1)
                )
            )
        if self.global_estimator is not None and estimate_illumination:
            rotation_torch = (
                torch.tensor(output_rotation)
                .to(self.device, dtype=torch.float32)[:3, :3]
                .unsqueeze(0)
            )
            global_dict.update(
                self.global_estimator(non_postprocessed_codes, rotation=rotation_torch)
            )

        global_dict["pointcloud"] = batch["pc_cond"]

        device = get_device()
        with torch.no_grad():
            with (
                torch.autocast(device_type=device, enabled=False)
                if "cuda" in device
                else nullcontext()
            ):
                meshes = self.triplane_to_meshes(scene_codes)

                rets = []
                for i, mesh in enumerate(meshes):
                    # Check for empty mesh
                    if mesh.v_pos.shape[0] == 0:
                        rets.append(trimesh.Trimesh())
                        continue

                    if remesh == "triangle":
                        mesh = mesh.triangle_remesh(triangle_vertex_count=vertex_count)
                    elif remesh == "quad":
                        mesh = mesh.quad_remesh(quad_vertex_count=vertex_count)
                    else:
                        if vertex_count > 0:
                            print(
                                "Warning: vertex_count is ignored when remesh is none"
                            )

                    if remesh != "none":
                        print(
                            f"After {remesh} remesh the mesh has {mesh.v_pos.shape[0]} verts and {mesh.t_pos_idx.shape[0]} faces",
                        )
                        mesh.unwrap_uv()

                    # Build textures
                    rast = self.baker.rasterize(
                        mesh.v_tex, mesh.t_pos_idx, bake_resolution
                    )
                    bake_mask = self.baker.get_mask(rast)

                    pos_bake = self.baker.interpolate(
                        mesh.v_pos,
                        rast,
                        mesh.t_pos_idx,
                    )
                    gb_pos = pos_bake[bake_mask]

                    tri_query = self.query_triplane(gb_pos, scene_codes[i])[0]
                    decoded = self.decoder(
                        tri_query, exclude=["density", "vertex_offset"]
                    )

                    nrm = self.baker.interpolate(
                        mesh.v_nrm,
                        rast,
                        mesh.t_pos_idx,
                    )
                    gb_nrm = F.normalize(nrm[bake_mask], dim=-1)
                    decoded["normal"] = gb_nrm

                    # Check if any keys in global_dict start with decoded_
                    for k, v in global_dict.items():
                        if k.startswith("decoder_"):
                            decoded[k.replace("decoder_", "")] = v[i]

                    mat_out = {
                        "albedo": decoded["features"],
                        "roughness": decoded["roughness"],
                        "metallic": decoded["metallic"],
                        "normal": normalize(decoded["perturb_normal"]),
                        "bump": None,
                    }

                    for k, v in mat_out.items():
                        if v is None:
                            continue
                        if v.shape[0] == 1:
                            # Skip and directly add a single value
                            mat_out[k] = v[0]
                        else:
                            f = torch.zeros(
                                bake_resolution,
                                bake_resolution,
                                v.shape[-1],
                                dtype=v.dtype,
                                device=v.device,
                            )
                            if v.shape == f.shape:
                                continue
                            if k == "normal":
                                # Use un-normalized tangents here so that larger smaller tris
                                # Don't effect the tangents that much
                                tng = self.baker.interpolate(
                                    mesh.v_tng,
                                    rast,
                                    mesh.t_pos_idx,
                                )
                                gb_tng = tng[bake_mask]
                                gb_tng = F.normalize(gb_tng, dim=-1)
                                gb_btng = F.normalize(
                                    torch.cross(gb_nrm, gb_tng, dim=-1), dim=-1
                                )
                                normal = F.normalize(mat_out["normal"], dim=-1)

                                # Create tangent space matrix and transform normal
                                tangent_matrix = torch.stack(
                                    [gb_tng, gb_btng, gb_nrm], dim=-1
                                )
                                normal_tangent = torch.bmm(
                                    tangent_matrix.transpose(1, 2), normal.unsqueeze(-1)
                                ).squeeze(-1)

                                # Convert from [-1,1] to [0,1] range for storage
                                normal_tangent = (normal_tangent * 0.5 + 0.5).clamp(
                                    0, 1
                                )

                                f[bake_mask] = normal_tangent.view(-1, 3)
                                mat_out["bump"] = f
                            else:
                                f[bake_mask] = v.view(-1, v.shape[-1])
                                mat_out[k] = f

                    def uv_padding(arr):
                        if arr.ndim == 1:
                            return arr
                        return (
                            dilate_fill(
                                arr.permute(2, 0, 1)[None, ...].contiguous(),
                                bake_mask.unsqueeze(0).unsqueeze(0),
                                iterations=bake_resolution // 150,
                            )
                            .squeeze(0)
                            .permute(1, 2, 0)
                            .contiguous()
                        )

                    verts_np = convert_data(mesh.v_pos)
                    faces = convert_data(mesh.t_pos_idx)
                    uvs = convert_data(mesh.v_tex)

                    basecolor_tex = Image.fromarray(
                        float32_to_uint8_np(convert_data(uv_padding(mat_out["albedo"])))
                    ).convert("RGB")
                    basecolor_tex.format = "JPEG"

                    metallic = mat_out["metallic"].squeeze().cpu().item()
                    roughness = mat_out["roughness"].squeeze().cpu().item()

                    if "bump" in mat_out and mat_out["bump"] is not None:
                        bump_np = convert_data(uv_padding(mat_out["bump"]))
                        bump_up = np.ones_like(bump_np)
                        bump_up[..., :2] = 0.5
                        bump_up[..., 2:] = 1
                        bump_tex = Image.fromarray(
                            float32_to_uint8_np(
                                bump_np,
                                dither=True,
                                # Do not dither if something is perfectly flat
                                dither_mask=np.all(
                                    bump_np == bump_up, axis=-1, keepdims=True
                                ).astype(np.float32),
                            )
                        ).convert("RGB")
                        bump_tex.format = (
                            "JPEG"  # PNG would be better but the assets are larger
                        )
                    else:
                        bump_tex = None

                    material = trimesh.visual.material.PBRMaterial(
                        baseColorTexture=basecolor_tex,
                        roughnessFactor=roughness,
                        metallicFactor=metallic,
                        normalTexture=bump_tex,
                    )

                    tmesh = trimesh.Trimesh(
                        vertices=verts_np,
                        faces=faces,
                        visual=trimesh.visual.texture.TextureVisuals(
                            uv=uvs, material=material
                        ),
                    )
                    tmesh.apply_transform(output_rotation)

                    tmesh.invert()

                    rets.append(tmesh)

        return rets, global_dict