File size: 10,340 Bytes
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from __future__ import annotations

import math
from typing import Any, Dict, Optional

import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from jaxtyping import Float, Integer
from torch import Tensor

from spar3d.models.utils import dot

try:
    from uv_unwrapper import Unwrapper
except ImportError:
    import logging

    logging.warning(
        "Could not import uv_unwrapper. Please install it via `pip install uv_unwrapper/`"
    )
    # Exit early to avoid further errors
    raise ImportError("uv_unwrapper not found")

try:
    import gpytoolbox

    TRIANGLE_REMESH_AVAILABLE = True
except ImportError:
    TRIANGLE_REMESH_AVAILABLE = False
    import logging

    logging.warning(
        "Could not import gpytoolbox. Triangle remeshing functionality will be disabled. "
        "Install via `pip install gpytoolbox`"
    )

try:
    import pynim

    QUAD_REMESH_AVAILABLE = True
except ImportError:
    QUAD_REMESH_AVAILABLE = False
    import logging

    logging.warning(
        "Could not import pynim. Quad remeshing functionality will be disabled. "
        "Install via `pip install git+https://github.com/vork/[email protected]`"
    )


class Mesh:
    def __init__(
        self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs
    ) -> None:
        self.v_pos: Float[Tensor, "Nv 3"] = v_pos
        self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx
        self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None
        self._edges: Optional[Integer[Tensor, "Ne 2"]] = None
        self.extras: Dict[str, Any] = {}
        for k, v in kwargs.items():
            self.add_extra(k, v)

        self.unwrapper = Unwrapper()

    def add_extra(self, k, v) -> None:
        self.extras[k] = v

    @property
    def requires_grad(self):
        return self.v_pos.requires_grad

    @property
    def v_nrm(self):
        if self._v_nrm is None:
            self._v_nrm = self._compute_vertex_normal()
        return self._v_nrm

    @property
    def v_tng(self):
        if self._v_tng is None:
            self._v_tng = self._compute_vertex_tangent()
        return self._v_tng

    @property
    def v_tex(self):
        if self._v_tex is None:
            self.unwrap_uv()
        return self._v_tex

    @property
    def edges(self):
        if self._edges is None:
            self._edges = self._compute_edges()
        return self._edges

    def _compute_vertex_normal(self):
        i0 = self.t_pos_idx[:, 0]
        i1 = self.t_pos_idx[:, 1]
        i2 = self.t_pos_idx[:, 2]

        v0 = self.v_pos[i0, :]
        v1 = self.v_pos[i1, :]
        v2 = self.v_pos[i2, :]

        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)

        # Splat face normals to vertices
        v_nrm = torch.zeros_like(self.v_pos)
        v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

        # Normalize, replace zero (degenerated) normals with some default value
        v_nrm = torch.where(
            dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
        )
        v_nrm = F.normalize(v_nrm, dim=1)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(v_nrm))

        return v_nrm

    def _compute_vertex_tangent(self):
        vn_idx = [None] * 3
        pos = [None] * 3
        tex = [None] * 3
        for i in range(0, 3):
            pos[i] = self.v_pos[self.t_pos_idx[:, i]]
            tex[i] = self.v_tex[self.t_pos_idx[:, i]]
            # t_nrm_idx is always the same as t_pos_idx
            vn_idx[i] = self.t_pos_idx[:, i]

        tangents = torch.zeros_like(self.v_nrm)
        tansum = torch.zeros_like(self.v_nrm)

        # Compute tangent space for each triangle
        duv1 = tex[1] - tex[0]
        duv2 = tex[2] - tex[0]
        dpos1 = pos[1] - pos[0]
        dpos2 = pos[2] - pos[0]

        tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]

        denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]

        # Avoid division by zero for degenerated texture coordinates
        denom_safe = denom.clip(1e-6)
        tang = tng_nom / denom_safe

        # Update all 3 vertices
        for i in range(0, 3):
            idx = vn_idx[i][:, None].repeat(1, 3)
            tangents.scatter_add_(0, idx, tang)  # tangents[n_i] = tangents[n_i] + tang
            tansum.scatter_add_(
                0, idx, torch.ones_like(tang)
            )  # tansum[n_i] = tansum[n_i] + 1
        # Also normalize it. Here we do not normalize the individual triangles first so larger area
        # triangles influence the tangent space more
        tangents = tangents / tansum

        # Normalize and make sure tangent is perpendicular to normal
        tangents = F.normalize(tangents, dim=1)
        tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(tangents))

        return tangents

    def quad_remesh(
        self,
        quad_vertex_count: int = -1,
        quad_rosy: int = 4,
        quad_crease_angle: float = -1.0,
        quad_smooth_iter: int = 2,
        quad_align_to_boundaries: bool = False,
    ) -> Mesh:
        if not QUAD_REMESH_AVAILABLE:
            raise ImportError("Quad remeshing requires pynim to be installed")
        if quad_vertex_count < 0:
            quad_vertex_count = self.v_pos.shape[0]
        v_pos = self.v_pos.detach().cpu().numpy().astype(np.float32)
        t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.uint32)

        new_vert, new_faces = pynim.remesh(
            v_pos,
            t_pos_idx,
            quad_vertex_count // 4,
            rosy=quad_rosy,
            posy=4,
            creaseAngle=quad_crease_angle,
            align_to_boundaries=quad_align_to_boundaries,
            smooth_iter=quad_smooth_iter,
            deterministic=False,
        )

        # Briefly load in trimesh
        mesh = trimesh.Trimesh(vertices=new_vert, faces=new_faces.astype(np.int32))

        v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos).contiguous()
        t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx).contiguous()

        # Create new mesh
        return Mesh(v_pos, t_pos_idx)

    def triangle_remesh(
        self,
        triangle_average_edge_length_multiplier: Optional[float] = None,
        triangle_remesh_steps: int = 10,
        triangle_vertex_count=-1,
    ):
        if not TRIANGLE_REMESH_AVAILABLE:
            raise ImportError("Triangle remeshing requires gpytoolbox to be installed")
        if triangle_vertex_count > 0:
            reduction = triangle_vertex_count / self.v_pos.shape[0]
            print("Triangle reduction:", reduction)
            v_pos = self.v_pos.detach().cpu().numpy().astype(np.float32)
            t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.int32)
            if reduction > 1.0:
                subdivide_iters = int(math.ceil(math.log(reduction) / math.log(2)))
                print("Subdivide iters:", subdivide_iters)
                v_pos, t_pos_idx = gpytoolbox.subdivide(
                    v_pos,
                    t_pos_idx,
                    iters=subdivide_iters,
                )
                reduction = triangle_vertex_count / v_pos.shape[0]

            # Simplify
            points_out, faces_out, _, _ = gpytoolbox.decimate(
                v_pos,
                t_pos_idx,
                face_ratio=reduction,
            )

            # Convert back to torch
            self.v_pos = torch.from_numpy(points_out).to(self.v_pos)
            self.t_pos_idx = torch.from_numpy(faces_out).to(self.t_pos_idx)
            self._edges = None
            triangle_average_edge_length_multiplier = None

        edges = self.edges
        if triangle_average_edge_length_multiplier is None:
            h = None
        else:
            h = float(
                torch.linalg.norm(
                    self.v_pos[edges[:, 0]] - self.v_pos[edges[:, 1]], dim=1
                )
                .mean()
                .item()
                * triangle_average_edge_length_multiplier
            )

        # Convert to numpy
        v_pos = self.v_pos.detach().cpu().numpy().astype(np.float64)
        t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.int32)

        # Remesh
        v_remesh, f_remesh = gpytoolbox.remesh_botsch(
            v_pos,
            t_pos_idx,
            triangle_remesh_steps,
            h,
        )

        # Convert back to torch
        v_pos = torch.from_numpy(v_remesh).to(self.v_pos).contiguous()
        t_pos_idx = torch.from_numpy(f_remesh).to(self.t_pos_idx).contiguous()

        # Create new mesh
        return Mesh(v_pos, t_pos_idx)

    @torch.no_grad()
    def unwrap_uv(
        self,
        island_padding: float = 0.02,
    ) -> Mesh:
        uv, indices = self.unwrapper(
            self.v_pos, self.v_nrm, self.t_pos_idx, island_padding
        )

        # Do store per vertex UVs.
        # This means we need to duplicate some vertices at the seams
        individual_vertices = self.v_pos[self.t_pos_idx].reshape(-1, 3)
        individual_faces = torch.arange(
            individual_vertices.shape[0],
            device=individual_vertices.device,
            dtype=self.t_pos_idx.dtype,
        ).reshape(-1, 3)
        uv_flat = uv[indices].reshape((-1, 2))
        # uv_flat[:, 1] = 1 - uv_flat[:, 1]

        self.v_pos = individual_vertices
        self.t_pos_idx = individual_faces
        self._v_tex = uv_flat
        self._v_nrm = self._compute_vertex_normal()
        self._v_tng = self._compute_vertex_tangent()

    def _compute_edges(self):
        # Compute edges
        edges = torch.cat(
            [
                self.t_pos_idx[:, [0, 1]],
                self.t_pos_idx[:, [1, 2]],
                self.t_pos_idx[:, [2, 0]],
            ],
            dim=0,
        )
        edges = edges.sort()[0]
        edges = torch.unique(edges, dim=0)
        return edges