stable-point-aware-3d / gradio_app.py
jammmmm's picture
Update gradio_app.py
ab71c41 verified
import os
import random
import tempfile
import time
import zipfile
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import cv2
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")
import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
bg_remover = Remover() # default setting
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
device = spar3d_utils.get_device()
model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval()
model = model.to(device)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def create_zip_file(glb_file, pc_file, illumination_file):
if not all([glb_file, pc_file, illumination_file]):
return None
# Create a temporary zip file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, "spar3d_output.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
zipf.write(glb_file, "mesh.glb")
zipf.write(pc_file, "points.ply")
zipf.write(illumination_file, "illumination.hdr")
generated_files.append(zip_path)
return zip_path
def forward_model(
batch,
system,
guidance_scale=3.0,
seed=0,
device="cuda",
remesh_option="none",
vertex_count=-1,
texture_resolution=1024,
):
batch_size = batch["rgb_cond"].shape[0]
# prepare the condition for point cloud generation
# set seed
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
cond_tokens = system.forward_pdiff_cond(batch)
if "pc_cond" not in batch:
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device,
)
for x in sample_iter:
samples = x["xstart"]
batch["pc_cond"] = samples.permute(0, 2, 1).float()
batch["pc_cond"] = spar3d_utils.normalize_pc_bbox(batch["pc_cond"])
# subsample to the 512 points
batch["pc_cond"] = batch["pc_cond"][
:, torch.randperm(batch["pc_cond"].shape[1])[:512]
]
# get the point cloud
xyz = batch["pc_cond"][0, :, :3].cpu().numpy()
color_rgb = (batch["pc_cond"][0, :, 3:6] * 255).cpu().numpy().astype(np.uint8)
pc_rgb_trimesh = trimesh.PointCloud(vertices=xyz, colors=color_rgb)
# forward for the final mesh
trimesh_mesh, _glob_dict = model.generate_mesh(
batch,
texture_resolution,
remesh=remesh_option,
vertex_count=vertex_count,
estimate_illumination=True,
)
trimesh_mesh = trimesh_mesh[0]
illumination = _glob_dict["illumination"]
return trimesh_mesh, pc_rgb_trimesh, illumination.cpu().detach().numpy()[0]
def run_model(
input_image,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count,
texture_resolution,
):
start = time.time()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.bfloat16)
if "cuda" in device
else nullcontext()
):
model_batch = create_batch(input_image)
model_batch = {k: v.to(device) for k, v in model_batch.items()}
if pc_cond is not None:
# Check if pc_cond is a list
if isinstance(pc_cond, list):
cond_tensor = torch.tensor(pc_cond).float().cuda().view(-1, 6)
xyz = cond_tensor[:, :3]
color_rgb = cond_tensor[:, 3:]
elif isinstance(pc_cond, dict):
xyz = torch.tensor(pc_cond["positions"]).float().cuda()
color_rgb = torch.tensor(pc_cond["colors"]).float().cuda()
else:
xyz = torch.tensor(pc_cond.vertices).float().cuda()
color_rgb = (
torch.tensor(pc_cond.colors[:, :3]).float().cuda() / 255.0
)
model_batch["pc_cond"] = torch.cat([xyz, color_rgb], dim=-1).unsqueeze(
0
)
# sub-sample the point cloud to the target number of points
if model_batch["pc_cond"].shape[1] > 512:
idx = torch.randperm(model_batch["pc_cond"].shape[1])[:512]
model_batch["pc_cond"] = model_batch["pc_cond"][:, idx]
elif model_batch["pc_cond"].shape[1] < 512:
num_points = model_batch["pc_cond"].shape[1]
gr.Warning(
f"The uploaded point cloud should have at least 512 points. This point cloud only has {num_points}. Results may be worse."
)
pad = 512 - num_points
sampled_idx = torch.randint(
0, model_batch["pc_cond"].shape[1], (pad,)
)
model_batch["pc_cond"] = torch.cat(
[
model_batch["pc_cond"],
model_batch["pc_cond"][:, sampled_idx],
],
dim=1,
)
trimesh_mesh, trimesh_pc, illumination_map = forward_model(
model_batch,
model,
guidance_scale=guidance_scale,
seed=random_seed,
device="cuda",
remesh_option=remesh_option.lower(),
vertex_count=vertex_count,
texture_resolution=texture_resolution,
)
# Create new tmp file
temp_dir = tempfile.mkdtemp()
tmp_file = os.path.join(temp_dir, "mesh.glb")
trimesh_mesh.export(tmp_file, file_type="glb", include_normals=True)
generated_files.append(tmp_file)
tmp_file_pc = os.path.join(temp_dir, "points.ply")
trimesh_pc.export(tmp_file_pc)
generated_files.append(tmp_file_pc)
tmp_file_illumination = os.path.join(temp_dir, "illumination.hdr")
cv2.imwrite(tmp_file_illumination, illumination_map)
generated_files.append(tmp_file_illumination)
print("Generation took:", time.time() - start, "s")
return tmp_file, tmp_file_pc, tmp_file_illumination, trimesh_pc
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
base = np.zeros((squares, squares)) + min_value
base[1::2, ::2] = 1
base[::2, 1::2] = 1
repeat_mult = size // squares
return (
base.repeat(repeat_mult, axis=0)
.repeat(repeat_mult, axis=1)[:, :, None]
.repeat(3, axis=-1)
)
def remove_background(input_image: Image) -> Image:
return bg_remover.process(input_image.convert("RGB"))
def show_mask_img(input_image: Image) -> Image:
img_numpy = np.array(input_image)
alpha = img_numpy[:, :, 3] / 255.0
chkb = checkerboard(32, 512) * 255
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
def process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
# Adjust vertex count based on selection
final_vertex_count = (
-1
if vertex_count_type == "Keep Vertex Count"
else (
vertex_count // 2
if vertex_count_type == "Target Face Count"
else vertex_count
)
)
print(
f"Final vertex count: {final_vertex_count} with type {vertex_count_type} and vertex count {vertex_count}"
)
glb_file, pc_file, illumination_file, pc_plot = run_model(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
final_vertex_count,
texture_resolution,
)
# Create a single float list of x y z r g b
point_list = []
for i in range(pc_plot.vertices.shape[0]):
point_list.extend(
[
pc_plot.vertices[i, 0],
pc_plot.vertices[i, 1],
pc_plot.vertices[i, 2],
pc_plot.colors[i, 0] / 255.0,
pc_plot.colors[i, 1] / 255.0,
pc_plot.colors[i, 2] / 255.0,
]
)
return glb_file, pc_file, illumination_file, point_list
def regenerate_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
glb_file, pc_file, illumination_file, point_list = process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
zip_file = create_zip_file(glb_file, pc_file, illumination_file)
return (
gr.update(), # run_btn
gr.update(), # img_proc_state
gr.update(), # background_remove_state
gr.update(), # preview_removal
gr.update(value=glb_file, visible=True), # output_3d
gr.update(visible=True), # hdr_row
illumination_file, # hdr_file
gr.update(visible=True), # point_cloud_row
gr.update(value=point_list), # point_cloud_editor
gr.update(value=pc_file), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=zip_file, visible=True), # download_all_btn
)
def run_button(
run_btn,
input_image,
background_state,
foreground_ratio,
no_crop,
guidance_scale,
random_seed,
pc_upload,
pc_cond_file,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
if run_btn == "Run":
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
if pc_upload:
# make sure the pc_cond_file has been uploaded
try:
pc_cond = trimesh.load(pc_cond_file.name)
except Exception:
raise gr.Error(
"Please upload a valid point cloud ply file as condition."
)
else:
pc_cond = None
glb_file, pc_file, illumination_file, pc_list = process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
zip_file = create_zip_file(glb_file, pc_file, illumination_file)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
return (
gr.update(), # run_btn
gr.update(), # img_proc_state
gr.update(), # background_remove_state
gr.update(), # preview_removal
gr.update(value=glb_file, visible=True), # output_3d
gr.update(visible=True), # hdr_row
illumination_file, # hdr_file
gr.update(visible=True), # point_cloud_row
gr.update(value=pc_list), # point_cloud_editor
gr.update(value=pc_file), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=zip_file, visible=True), # download_all_btn
)
elif run_btn == "Remove Background":
rem_removed = remove_background(input_image)
fr_res = spar3d_utils.foreground_crop(
rem_removed,
crop_ratio=foreground_ratio,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=no_crop,
)
return (
gr.update(value="Run", visible=True), # run_btn
rem_removed, # img_proc_state,
fr_res, # background_remove_state
gr.update(value=show_mask_img(fr_res), visible=True), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
None, # hdr_file
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=None, visible=False), # download_all_btn
)
def requires_bg_remove(image, fr, no_crop):
if image is None:
return (
gr.update(visible=False, value="Run"), # run_Btn
None, # img_proc_state
None, # background_remove_state
gr.update(value=None, visible=False), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(value=None, visible=False), # hdr_row
None, # hdr_file
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=None, visible=False), # download_all_btn
)
alpha_channel = np.array(image.getchannel("A"))
min_alpha = alpha_channel.min()
if min_alpha == 0:
print("Already has alpha")
fr_res = spar3d_utils.foreground_crop(
image, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
)
return (
gr.update(value="Run", visible=True), # run_Btn
image, # img_proc_state
fr_res, # background_remove_state
gr.update(value=show_mask_img(fr_res), visible=True), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
None, # hdr_file
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=None, visible=False), # download_all_btn
)
return (
gr.update(value="Remove Background", visible=True), # run_Btn
None, # img_proc_state
None, # background_remove_state
gr.update(value=None, visible=False), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
None, # hdr_file
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
gr.update(value=None, visible=False), # download_all_btn
)
def update_foreground_ratio(img_proc, fr, no_crop):
foreground_res = spar3d_utils.foreground_crop(
img_proc, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
)
return (
foreground_res,
gr.update(value=show_mask_img(foreground_res)),
)
def update_resolution_controls(remesh_choice, vertex_count_type):
show_controls = remesh_choice.lower() != "none"
show_vertex_count = vertex_count_type != "Keep Vertex Count"
return (
gr.update(visible=show_controls), # vertex_count_type
gr.update(visible=show_controls and show_vertex_count), # vertex_count_slider
)
with gr.Blocks() as demo:
img_proc_state = gr.State()
background_remove_state = gr.State()
hdr_illumination_file_state = gr.State()
gr.Markdown(
"""
# SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
<a href="https://arxiv.org/abs/2501.04689"><img src="https://img.shields.io/badge/Arxiv-2501.04689-B31B1B.svg"></a><a href="https://huggingface.co/stabilityai/stable-point-aware-3d"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a>
<br>
# [Project Page](https://spar3d.github.io/)
SPAR3D is a state-of-the-art method for 3D mesh reconstruction from a single image. This demo allows you to upload an image and generate a 3D mesh model from it. A feature of SPAR3D is it generates point clouds as intermediate representation before producing the mesh. You can edit the point cloud to adjust the final mesh. We provide a simple point cloud editor in this demo, where you can drag, recolor and rescale the point clouds. If you have more advanced editing needs (e.g. box selection, duplication, local streching, etc.), you can download the point cloud and edit it in softwares such as MeshLab or Blender. The edited point cloud can then be uploaded to this demo to generate a new 3D model by checking the "Point cloud upload" box.
**Tips**
1. If the image does not have a valid alpha channel, it will go through the background removal step. Our built-in background removal can be inaccurate sometimes, which will result in poor mesh quality. In such cases, you can use external background removal tools to obtain a RGBA image before uploading here.
2. You can adjust the foreground ratio to control the size of the foreground object. This may have major impact on the final mesh.
3. Guidance scale controls the strength of the image condition in the point cloud generation process. A higher value may result in higher mesh fidelity, but the variability by changing the random seed will be lower. Note that the guidance scale and the seed are not effective when the point cloud is manually uploaded.
4. Our online editor supports multi-selection by holding down the shift key. This allows you to recolor multiple points at once.
5. The editing should mainly alter the unseen parts of the object. Visible parts can be edited, but the edits should be consistent with the image. Editing the visible parts in a way that contradicts the image may result in poor mesh quality.
6. You can upload your own HDR environment map to light the 3D model.
"""
)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_img = gr.Image(
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
)
preview_removal = gr.Image(
label="Preview Background Removal",
type="pil",
image_mode="RGB",
interactive=False,
visible=False,
)
gr.Markdown("### Input Controls")
with gr.Group():
with gr.Row():
no_crop = gr.Checkbox(label="No cropping", value=False)
pc_upload = gr.Checkbox(label="Point cloud upload", value=False)
pc_cond_file = gr.File(
label="Point Cloud Upload",
file_types=[".ply"],
file_count="single",
visible=False,
)
foreground_ratio = gr.Slider(
label="Padding Ratio",
minimum=1.0,
maximum=2.0,
value=1.3,
step=0.05,
)
pc_upload.change(
lambda x: gr.update(visible=x),
inputs=pc_upload,
outputs=[pc_cond_file],
)
no_crop.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio, no_crop],
outputs=[background_remove_state, preview_removal],
)
foreground_ratio.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio, no_crop],
outputs=[background_remove_state, preview_removal],
)
gr.Markdown("### Point Diffusion Controls")
with gr.Group():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
value=3.0,
step=1.0,
)
random_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=10000,
value=0,
step=1,
)
no_remesh = not TRIANGLE_REMESH_AVAILABLE and not QUAD_REMESH_AVAILABLE
gr.Markdown(
"### Texture Controls"
if no_remesh
else "### Meshing and Texture Controls"
)
with gr.Group():
remesh_choices = ["None"]
if TRIANGLE_REMESH_AVAILABLE:
remesh_choices.append("Triangle")
if QUAD_REMESH_AVAILABLE:
remesh_choices.append("Quad")
remesh_option = gr.Radio(
choices=remesh_choices,
label="Remeshing",
value="None",
visible=not no_remesh,
)
vertex_count_type = gr.Radio(
choices=[
"Keep Vertex Count",
"Target Vertex Count",
"Target Face Count",
],
label="Mesh Resolution Control",
value="Keep Vertex Count",
visible=False,
)
vertex_count_slider = gr.Slider(
label="Target Count",
minimum=0,
maximum=20000,
value=2000,
visible=False,
)
texture_size = gr.Slider(
label="Texture Size",
minimum=512,
maximum=2048,
value=1024,
step=256,
visible=True,
)
remesh_option.change(
update_resolution_controls,
inputs=[remesh_option, vertex_count_type],
outputs=[vertex_count_type, vertex_count_slider],
)
vertex_count_type.change(
update_resolution_controls,
inputs=[remesh_option, vertex_count_type],
outputs=[vertex_count_type, vertex_count_slider],
)
run_btn = gr.Button("Run", variant="primary", visible=False)
with gr.Column():
with gr.Group(visible=False) as point_cloud_row:
point_size_slider = gr.Slider(
label="Point Size",
minimum=0.01,
maximum=1.0,
value=0.2,
step=0.01,
)
point_cloud_editor = PointCloudEditor(
up_axis="Z",
forward_axis="X",
lock_scale_z=True,
lock_scale_y=True,
visible=True,
)
pc_download = gr.File(
label="Point Cloud Download",
file_types=[".ply"],
file_count="single",
)
point_size_slider.change(
fn=lambda x: gr.update(point_size=x),
inputs=point_size_slider,
outputs=point_cloud_editor,
)
regenerate_btn = gr.Button(
"Re-run with point cloud", variant="primary", visible=False
)
output_3d = LitModel3D(
label="3D Model",
visible=False,
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
with gr.Column(visible=False, scale=1.0) as hdr_row:
gr.Markdown(
"""## HDR Environment Map
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
"""
)
with gr.Row():
hdr_illumination_file = gr.File(
label="HDR Env Map",
file_types=[".hdr"],
file_count="single",
)
example_hdris = [
os.path.join("demo_files/hdri", f)
for f in os.listdir("demo_files/hdri")
]
hdr_illumination_example = gr.Examples(
examples=example_hdris,
inputs=hdr_illumination_file,
)
def update_hdr_illumination_file(state, cur_update):
# If the current value of hdr_illumination_file is the same as cur_update, then we don't need to update
if (
hdr_illumination_file.value is not None
and hdr_illumination_file.value == cur_update
):
return (
gr.update(),
gr.update(),
)
update_value = cur_update if cur_update is not None else state
if update_value is not None:
return (
gr.update(value=update_value),
gr.update(
env_map=(
update_value.name
if isinstance(update_value, gr.File)
else update_value
)
),
)
return (gr.update(value=None), gr.update(env_map=None))
hdr_illumination_file.change(
update_hdr_illumination_file,
inputs=[hdr_illumination_file_state, hdr_illumination_file],
outputs=[hdr_illumination_file, output_3d],
)
download_all_btn = gr.File(
label="Download All Files (ZIP)", file_count="single", visible=False
)
hdr_illumination_file_state.change(
fn=lambda x: gr.update(value=x),
inputs=hdr_illumination_file_state,
outputs=hdr_illumination_file,
)
examples = gr.Examples(
examples=example_files, inputs=input_img, examples_per_page=11
)
input_img.change(
requires_bg_remove,
inputs=[input_img, foreground_ratio, no_crop],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
hdr_illumination_file_state,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
download_all_btn,
],
)
point_cloud_editor.edit(
fn=lambda _x: gr.update(visible=True),
inputs=point_cloud_editor,
outputs=regenerate_btn,
)
regenerate_btn.click(
regenerate_run,
inputs=[
background_remove_state,
guidance_scale,
random_seed,
point_cloud_editor,
remesh_option,
vertex_count_type,
vertex_count_slider,
texture_size,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
hdr_illumination_file_state,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
download_all_btn,
],
)
run_btn.click(
run_button,
inputs=[
run_btn,
input_img,
background_remove_state,
foreground_ratio,
no_crop,
guidance_scale,
random_seed,
pc_upload,
pc_cond_file,
remesh_option,
vertex_count_type,
vertex_count_slider,
texture_size,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
hdr_illumination_file_state,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
download_all_btn,
],
)
demo.queue().launch(share=False)