srivatsavdamaraju
commited on
Create bestscript.txt
Browse files- bestscript.txt +113 -0
bestscript.txt
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let currentStream = null;
|
2 |
+
let currentFacingMode = 'user';
|
3 |
+
|
4 |
+
async function loadTFLiteModel() {
|
5 |
+
try {
|
6 |
+
// Set TensorFlow.js to use CPU backend
|
7 |
+
await tf.setBackend('cpu');
|
8 |
+
await tf.ready(); // Ensure TensorFlow is ready to use CPU backend
|
9 |
+
|
10 |
+
const modelUrl = 'midas.tflite';
|
11 |
+
const wasmPath = await tflite.setWasmPath('https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/wasm/');
|
12 |
+
const model = await tflite.loadTFLiteModel(modelUrl);
|
13 |
+
console.log('Model loaded successfully');
|
14 |
+
return model;
|
15 |
+
} catch (error) {
|
16 |
+
console.error('Error loading TFLite model:', error);
|
17 |
+
}
|
18 |
+
}
|
19 |
+
|
20 |
+
function preprocessImage(imageElement) {
|
21 |
+
try {
|
22 |
+
const tensor = tf.browser.fromPixels(imageElement).toFloat();
|
23 |
+
const resized = tf.image.resizeBilinear(tensor, [256, 256]); // Resize to 256x256 as required by the model
|
24 |
+
const normalized = resized.div(255.0).expandDims(0); // Normalize to [0,1] and add batch dimension
|
25 |
+
return normalized;
|
26 |
+
} catch (error) {
|
27 |
+
console.error('Error during image preprocessing:', error);
|
28 |
+
}
|
29 |
+
}
|
30 |
+
|
31 |
+
async function predictDepth(model, preprocessedImage) {
|
32 |
+
try {
|
33 |
+
const depthMap = model.predict(preprocessedImage);
|
34 |
+
const squeezed = depthMap.squeeze(); // Remove batch dimension
|
35 |
+
const normalizedDepthMap = squeezed.div(squeezed.max()).mul(255).toInt(); // Normalize the depth map to [0,255]
|
36 |
+
return normalizedDepthMap;
|
37 |
+
} catch (error) {
|
38 |
+
console.error('Error during depth prediction:', error);
|
39 |
+
}
|
40 |
+
}
|
41 |
+
|
42 |
+
function renderDepthMap(depthMap, canvasElement) {
|
43 |
+
try {
|
44 |
+
const [width, height] = [depthMap.shape[1], depthMap.shape[0]];
|
45 |
+
const imageData = new ImageData(width, height);
|
46 |
+
|
47 |
+
const data = depthMap.dataSync();
|
48 |
+
|
49 |
+
for (let i = 0; i < data.length; i++) {
|
50 |
+
const value = data[i];
|
51 |
+
imageData.data[4 * i] = value; // R
|
52 |
+
imageData.data[4 * i + 1] = value; // G
|
53 |
+
imageData.data[4 * i + 2] = value; // B
|
54 |
+
imageData.data[4 * i + 3] = 255; // A
|
55 |
+
}
|
56 |
+
|
57 |
+
const ctx = canvasElement.getContext('2d');
|
58 |
+
canvasElement.width = width;
|
59 |
+
canvasElement.height = height;
|
60 |
+
ctx.putImageData(imageData, 0, 0);
|
61 |
+
} catch (error) {
|
62 |
+
console.error('Error rendering depth map:', error);
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
function analyzeDepth(depthMap) {
|
67 |
+
try {
|
68 |
+
const depthArray = depthMap.dataSync();
|
69 |
+
const averageDepth = depthArray.reduce((a, b) => a + b, 0) / depthArray.length;
|
70 |
+
console.log('Average Depth:', averageDepth);
|
71 |
+
document.getElementById('averageDepth').innerText = `Average Depth: ${averageDepth.toFixed(2)}`;
|
72 |
+
} catch (error) {
|
73 |
+
console.error('Error analyzing depth:', error);
|
74 |
+
}
|
75 |
+
}
|
76 |
+
|
77 |
+
async function startVideo(facingMode = 'user') {
|
78 |
+
const video = document.getElementById('video');
|
79 |
+
|
80 |
+
if (currentStream) {
|
81 |
+
currentStream.getTracks().forEach(track => track.stop());
|
82 |
+
}
|
83 |
+
|
84 |
+
try {
|
85 |
+
const stream = await navigator.mediaDevices.getUserMedia({ video: { facingMode } });
|
86 |
+
currentStream = stream;
|
87 |
+
video.srcObject = stream;
|
88 |
+
|
89 |
+
video.addEventListener('loadeddata', async () => {
|
90 |
+
const model = await loadTFLiteModel();
|
91 |
+
|
92 |
+
if (model) {
|
93 |
+
setInterval(async () => {
|
94 |
+
const preprocessedImage = preprocessImage(video);
|
95 |
+
const depthMap = await predictDepth(model, preprocessedImage);
|
96 |
+
|
97 |
+
const canvas = document.getElementById('depthCanvas');
|
98 |
+
renderDepthMap(depthMap, canvas);
|
99 |
+
analyzeDepth(depthMap);
|
100 |
+
}, 500); // Run depth prediction every 500ms
|
101 |
+
}
|
102 |
+
});
|
103 |
+
} catch (error) {
|
104 |
+
console.error('Error accessing the camera:', error);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
document.getElementById('swapButton').addEventListener('click', () => {
|
109 |
+
currentFacingMode = currentFacingMode === 'user' ? 'environment' : 'user';
|
110 |
+
startVideo(currentFacingMode);
|
111 |
+
});
|
112 |
+
|
113 |
+
startVideo();
|