srivatsavdamaraju's picture
Update script.js
5eb0816 verified
let currentStream = null;
let currentFacingMode = 'user';
let frameCount = 0;
async function loadTFLiteModel() {
try {
// Set TensorFlow.js to use CPU backend
await tf.setBackend('cpu');
await tf.ready(); // Ensure TensorFlow is ready to use CPU backend
const modelUrl = 'midas.tflite';
const wasmPath = await tflite.setWasmPath('https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/wasm/');
const model = await tflite.loadTFLiteModel(modelUrl);
console.log('Model loaded successfully');
return model;
} catch (error) {
console.error('Error loading TFLite model:', error);
}
}
function preprocessImage(imageElement) {
try {
const tensor = tf.browser.fromPixels(imageElement).toFloat();
const resized = tf.image.resizeBilinear(tensor, [256, 256]); // Resize to 256x256 as required by the model
const normalized = resized.div(255.0).expandDims(0); // Normalize to [0,1] and add batch dimension
return normalized;
} catch (error) {
console.error('Error during image preprocessing:', error);
}
}
async function predictDepth(model, preprocessedImage) {
try {
const depthMap = model.predict(preprocessedImage);
const squeezed = depthMap.squeeze(); // Remove batch dimension
const normalizedDepthMap = squeezed.div(squeezed.max()).mul(255).toInt(); // Normalize the depth map to [0,255]
return normalizedDepthMap;
} catch (error) {
console.error('Error during depth prediction:', error);
}
}
function renderDepthMap(depthMap, canvasElement) {
try {
const [width, height] = [depthMap.shape[1], depthMap.shape[0]];
const imageData = new ImageData(width, height);
const data = depthMap.dataSync();
for (let i = 0; i < data.length; i++) {
const value = data[i];
imageData.data[4 * i] = value; // R
imageData.data[4 * i + 1] = value; // G
imageData.data[4 * i + 2] = value; // B
imageData.data[4 * i + 3] = 255; // A
}
const ctx = canvasElement.getContext('2d');
canvasElement.width = width;
canvasElement.height = height;
ctx.putImageData(imageData, 0, 0);
} catch (error) {
console.error('Error rendering depth map:', error);
}
}
function analyzeDepth(depthMap) {
try {
const depthArray = depthMap.dataSync();
const averageDepth = depthArray.reduce((a, b) => a + b, 0) / depthArray.length;
console.log('Average Depth:', averageDepth);
document.getElementById('averageDepth').innerText = `Average Depth: ${averageDepth.toFixed(2)}`;
} catch (error) {
console.error('Error analyzing depth:', error);
}
}
async function startVideo(facingMode = 'user') {
const video = document.getElementById('video');
if (currentStream) {
currentStream.getTracks().forEach(track => track.stop());
}
try {
const stream = await navigator.mediaDevices.getUserMedia({ video: { facingMode } });
currentStream = stream;
video.srcObject = stream;
video.addEventListener('loadeddata', async () => {
const model = await loadTFLiteModel();
if (model) {
function processFrame() {
frameCount++;
// Process every 3rd frame to reduce processing load
if (frameCount % 3 === 0) {
const preprocessedImage = preprocessImage(video);
predictDepth(model, preprocessedImage).then(depthMap => {
const canvas = document.getElementById('depthCanvas');
renderDepthMap(depthMap, canvas);
analyzeDepth(depthMap);
});
}
// Request next frame
requestAnimationFrame(processFrame);
}
// Start frame processing
requestAnimationFrame(processFrame);
}
});
} catch (error) {
console.error('Error accessing the camera:', error);
}
}
document.getElementById('swapButton').addEventListener('click', () => {
currentFacingMode = currentFacingMode === 'user' ? 'environment' : 'user';
startVideo(currentFacingMode);
});
startVideo();