srijaydeshpande commited on
Commit
d7d2792
·
verified ·
1 Parent(s): e94b20b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -19
app.py CHANGED
@@ -5,6 +5,7 @@ import re
5
  import gradio as gr
6
  from llama_cpp import Llama
7
  import os
 
8
 
9
  def process_document(pdf_path, page_ids=None):
10
 
@@ -63,25 +64,28 @@ def txt_to_html(text):
63
 
64
  def deidentify_doc(pdftext=""):
65
 
66
- # prompt = "Please anonymize the following clinical note. Replace all the following information with the term '[redacted]': Redact any strings that might be a name or acronym or initials, patients’ names, doctors’ names, the names of the M.D. or Dr., redact any medical staff names, redact any strings that might be a location or address, such as '3970 Longview Drive', redact any strings that look like 'something years old' or 'age 37', redact any dates and IDs and record dates, redact professions such as 'manager', redact any contact information."
67
  prompt = "Please anonymize the following clinical note. Replace all the following information with the term '[redacted]': Redact any strings that might be a name or initials, patients’ names, doctors’ names, the names Dr., redact any medical staff names, redact any strings that might be a location or address, such as '3970 Longview Drive', redact any strings that look like 'age 37', redact any dates and registration numbers, redact professions such as 'manager', redact any contact information."
68
 
69
- print('Input prompt is ',prompt)
70
- print('Input pdf text is ',pdftext)
71
-
72
- output = model.create_chat_completion(
73
- messages = [
74
- {"role": "assistant", "content": prompt},
75
- {
76
- "role": "user",
77
- "content": pdftext
78
- }
79
- ],
80
- max_tokens=600,
81
- temperature=0
82
- )
83
- output = output['choices'][0]['message']['content']
84
-
 
 
 
 
85
  return output
86
 
87
  def pdf_to_text(file):
@@ -95,8 +99,11 @@ def pdf_to_text(file):
95
  file.write(html)
96
  return html
97
 
98
- model_id = "Meta-Llama-3-8B-Instruct.Q5_K_M.gguf"
99
- model = Llama(model_path=model_id, n_ctx=2048, n_threads=8, n_gpu_layers=20, n_batch=128)
 
 
 
100
 
101
  css = ".gradio-container {background: 'logo.png'}"
102
 
 
5
  import gradio as gr
6
  from llama_cpp import Llama
7
  import os
8
+ from gpt4all import GPT4All
9
 
10
  def process_document(pdf_path, page_ids=None):
11
 
 
64
 
65
  def deidentify_doc(pdftext=""):
66
 
 
67
  prompt = "Please anonymize the following clinical note. Replace all the following information with the term '[redacted]': Redact any strings that might be a name or initials, patients’ names, doctors’ names, the names Dr., redact any medical staff names, redact any strings that might be a location or address, such as '3970 Longview Drive', redact any strings that look like 'age 37', redact any dates and registration numbers, redact professions such as 'manager', redact any contact information."
68
 
69
+ # print('Input prompt is ',prompt)
70
+ # print('Input pdf text is ',pdftext)
71
+
72
+ # output = model.create_chat_completion(
73
+ # messages = [
74
+ # {"role": "assistant", "content": prompt},
75
+ # {
76
+ # "role": "user",
77
+ # "content": pdftext
78
+ # }
79
+ # ],
80
+ # max_tokens=600,
81
+ # temperature=0
82
+ # )
83
+ # output = output['choices'][0]['message']['content']
84
+
85
+ if (pdftext):
86
+ prompt = prompt + ': ' + pdftext
87
+ output = model.generate(prompt=prompt, max_tokens=1024, n_batch=128)
88
+
89
  return output
90
 
91
  def pdf_to_text(file):
 
99
  file.write(html)
100
  return html
101
 
102
+ # model_id = "Meta-Llama-3-8B-Instruct.Q5_K_M.gguf"
103
+ # model = Llama(model_path=model_id, n_ctx=2048, n_threads=8, n_gpu_layers=20, n_batch=128)
104
+
105
+ model = GPT4All("Meta-Llama-3-8B-Instruct.Q4_0.gguf", n_threads=8, device='gpu')
106
+ model.chat_session()
107
 
108
  css = ".gradio-container {background: 'logo.png'}"
109