Spaces:
Running
on
Zero
Running
on
Zero
srijaydeshpande
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,48 +13,49 @@ subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
|
|
13 |
|
14 |
from llama_cpp import Llama
|
15 |
|
16 |
-
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
17 |
|
18 |
def process_document(pdf_path, page_ids=None):
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
page_id = extracted_page.pageid
|
26 |
-
content = process_page(extracted_page)
|
27 |
-
page2content[page_id] = content
|
28 |
|
29 |
-
return page2content
|
30 |
|
31 |
def process_page(extracted_page):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
def extract_text_and_normalize(element):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
def txt_to_html(text):
|
60 |
html_content = "<html><body>"
|
@@ -63,23 +64,37 @@ def txt_to_html(text):
|
|
63 |
html_content += "</body></html>"
|
64 |
return html_content
|
65 |
|
66 |
-
def deidentify_doc(pdftext="", prompt="", maxtokens=600, temperature=1.2, top_probability=0.95):
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
output = model.create_chat_completion(
|
71 |
-
messages = [
|
72 |
-
{"role": "assistant", "content": prompt},
|
73 |
-
{
|
74 |
-
"role": "user",
|
75 |
-
"content": pdftext
|
76 |
-
}
|
77 |
-
],
|
78 |
-
max_tokens=maxtokens,
|
79 |
-
temperature=temperature
|
80 |
-
)
|
81 |
-
output = output['choices'][0]['message']['content']
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return output
|
84 |
|
85 |
def mkdir(dir):
|
@@ -88,19 +103,20 @@ def mkdir(dir):
|
|
88 |
|
89 |
@spaces.GPU(duration=120)
|
90 |
def pdf_to_text(files, output_folder, prompt, maxtokens=600, temperature=1.2, top_probability=0.95):
|
91 |
-
output_folder = output_folder.replace('\\','/')
|
92 |
for file in files:
|
93 |
file_name = os.path.basename(file)
|
94 |
file_name_splt = file_name.split('.')
|
95 |
print('File name is ', file_name)
|
96 |
print('output folder is ', output_folder)
|
97 |
-
if(len(file_name_splt)>1 and file_name_splt[1]=='pdf'):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
return anonymized_text
|
103 |
|
|
|
104 |
model_id = "Meta-Llama-3-8B-Instruct.Q5_K_M.gguf"
|
105 |
model = Llama(model_path=model_id, n_ctx=2048, n_threads=8, n_gpu_layers=81, n_batch=64)
|
106 |
|
@@ -113,11 +129,11 @@ input_folder_text = gr.Textbox(label='Enter output folder path')
|
|
113 |
output_text = gr.Textbox()
|
114 |
output_path_component = gr.File(label="Select Output Path")
|
115 |
iface = gr.Interface(
|
116 |
-
fn
|
117 |
-
inputs
|
118 |
outputs=output_text,
|
119 |
title='COBIx Endoscopy Report De-Identification',
|
120 |
description="This application assists to remove personal information from the uploaded clinical report",
|
121 |
theme=gr.themes.Soft(),
|
122 |
-
|
123 |
iface.launch()
|
|
|
13 |
|
14 |
from llama_cpp import Llama
|
15 |
|
|
|
16 |
|
17 |
def process_document(pdf_path, page_ids=None):
|
18 |
+
extracted_pages = extract_pages(pdf_path, page_numbers=page_ids)
|
19 |
|
20 |
+
page2content = {}
|
21 |
|
22 |
+
for extracted_page in tqdm(extracted_pages):
|
23 |
+
page_id = extracted_page.pageid
|
24 |
+
content = process_page(extracted_page)
|
25 |
+
page2content[page_id] = content
|
26 |
|
27 |
+
return page2content
|
|
|
|
|
|
|
28 |
|
|
|
29 |
|
30 |
def process_page(extracted_page):
|
31 |
+
content = []
|
32 |
+
elements = [element for element in extracted_page._objs]
|
33 |
+
elements.sort(key=lambda a: a.y1, reverse=True)
|
34 |
+
for i, element in enumerate(elements):
|
35 |
+
if isinstance(element, LTTextContainer):
|
36 |
+
line_text = extract_text_and_normalize(element)
|
37 |
+
content.append(line_text)
|
38 |
+
content = re.sub('\n+', ' ', ''.join(content))
|
39 |
+
return content
|
40 |
+
|
41 |
|
42 |
def extract_text_and_normalize(element):
|
43 |
+
# Extract text from line and split it with new lines
|
44 |
+
line_texts = element.get_text().split('\n')
|
45 |
+
norm_text = ''
|
46 |
+
for line_text in line_texts:
|
47 |
+
line_text = line_text.strip()
|
48 |
+
if not line_text:
|
49 |
+
line_text = '\n'
|
50 |
+
else:
|
51 |
+
line_text = re.sub('\s+', ' ', line_text)
|
52 |
+
if not re.search('[\w\d\,\-]', line_text[-1]):
|
53 |
+
line_text += '\n'
|
54 |
+
else:
|
55 |
+
line_text += ' '
|
56 |
+
norm_text += line_text
|
57 |
+
return norm_text
|
58 |
+
|
59 |
|
60 |
def txt_to_html(text):
|
61 |
html_content = "<html><body>"
|
|
|
64 |
html_content += "</body></html>"
|
65 |
return html_content
|
66 |
|
|
|
67 |
|
68 |
+
def deidentify_doc(pdftext="", prompt="", maxtokens=600, temperature=1.2, top_probability=0.95):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
def replace_words_with_asterisk(big_string, words_to_replace):
|
71 |
+
for word in words_to_replace:
|
72 |
+
big_string = big_string.replace(word, '*')
|
73 |
+
return big_string
|
74 |
+
|
75 |
+
def get_output(pdfcontent):
|
76 |
+
output = model.create_chat_completion(
|
77 |
+
messages=[
|
78 |
+
{"role": "assistant", "content": prompt},
|
79 |
+
{
|
80 |
+
"role": "user",
|
81 |
+
"content": pdfcontent
|
82 |
+
}
|
83 |
+
],
|
84 |
+
max_tokens=maxtokens,
|
85 |
+
temperature=temperature
|
86 |
+
)
|
87 |
+
wordstoremove = output['choices'][0]['message']['content']
|
88 |
+
position = wordstoremove.find("STARTTOKEN,")
|
89 |
+
if position != -1:
|
90 |
+
wordstoremove = wordstoremove[position + len("STARTTOKEN,"):].strip()
|
91 |
+
output = replace_words_with_asterisk(pdftext, wordstoremove.split(','))
|
92 |
+
return output
|
93 |
+
|
94 |
+
iterations=2
|
95 |
+
output = pdftext
|
96 |
+
for _ in iterations:
|
97 |
+
output = get_output(output)
|
98 |
return output
|
99 |
|
100 |
def mkdir(dir):
|
|
|
103 |
|
104 |
@spaces.GPU(duration=120)
|
105 |
def pdf_to_text(files, output_folder, prompt, maxtokens=600, temperature=1.2, top_probability=0.95):
|
106 |
+
output_folder = output_folder.replace('\\', '/')
|
107 |
for file in files:
|
108 |
file_name = os.path.basename(file)
|
109 |
file_name_splt = file_name.split('.')
|
110 |
print('File name is ', file_name)
|
111 |
print('output folder is ', output_folder)
|
112 |
+
if (len(file_name_splt) > 1 and file_name_splt[1] == 'pdf'):
|
113 |
+
page2content = process_document(file, page_ids=[0])
|
114 |
+
pdftext = page2content[1]
|
115 |
+
if (pdftext):
|
116 |
+
anonymized_text = deidentify_doc(pdftext, prompt, maxtokens, temperature, top_probability)
|
117 |
return anonymized_text
|
118 |
|
119 |
+
|
120 |
model_id = "Meta-Llama-3-8B-Instruct.Q5_K_M.gguf"
|
121 |
model = Llama(model_path=model_id, n_ctx=2048, n_threads=8, n_gpu_layers=81, n_batch=64)
|
122 |
|
|
|
129 |
output_text = gr.Textbox()
|
130 |
output_path_component = gr.File(label="Select Output Path")
|
131 |
iface = gr.Interface(
|
132 |
+
fn=pdf_to_text,
|
133 |
+
inputs=['files', input_folder_text, "textbox", max_tokens, temp_slider, prob_slider],
|
134 |
outputs=output_text,
|
135 |
title='COBIx Endoscopy Report De-Identification',
|
136 |
description="This application assists to remove personal information from the uploaded clinical report",
|
137 |
theme=gr.themes.Soft(),
|
138 |
+
)
|
139 |
iface.launch()
|