sanarawal7
commited on
Commit
·
5639b64
1
Parent(s):
1a76cb5
again
Browse files
app.py
CHANGED
@@ -1,38 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
|
5 |
# Replace with your Hugging Face API token
|
6 |
-
hf_api_token = "
|
7 |
|
8 |
-
# Load the model and tokenizer globally, not inside the function
|
9 |
-
model_name = "allenai/Molmo-7B-D-0924"
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_api_token)
|
11 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name, trust_remote_code=True,use_auth_token=hf_api_token)
|
12 |
|
13 |
def generate_questions(file_content):
|
|
|
|
|
|
|
|
|
|
|
14 |
# Preprocess file content (assuming it's already text)
|
15 |
try:
|
16 |
text = file_content.decode("utf-8")
|
17 |
except Exception as e:
|
18 |
return f"Error decoding file: {str(e)}", ""
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Extract questions and options (basic implementation)
|
26 |
questions = []
|
27 |
options = []
|
28 |
-
for answer in
|
29 |
if answer.startswith("Q"):
|
30 |
questions.append(answer.strip())
|
31 |
else:
|
32 |
options.append(answer.strip())
|
33 |
|
|
|
|
|
|
|
34 |
return questions, options
|
35 |
|
|
|
36 |
# Create Gradio interface
|
37 |
question_box = gr.Textbox(label="Questions")
|
38 |
option_box = gr.Textbox(label="Options")
|
@@ -44,4 +55,4 @@ iface = gr.Interface(
|
|
44 |
title="Question and Option Generator"
|
45 |
)
|
46 |
|
47 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
# Replace with your Hugging Face API token
|
6 |
+
hf_api_token = "YOUR_API_TOKEN"
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def generate_questions(file_content):
|
10 |
+
# Load MolMo model and tokenizer with API token
|
11 |
+
model_name = "allenai/Molmo-7B-D-0924"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_api_token)
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_auth_token=hf_api_token)
|
14 |
+
|
15 |
# Preprocess file content (assuming it's already text)
|
16 |
try:
|
17 |
text = file_content.decode("utf-8")
|
18 |
except Exception as e:
|
19 |
return f"Error decoding file: {str(e)}", ""
|
20 |
|
21 |
+
# Create a prompt
|
22 |
+
prompt = f"Here is a text: {text}. Please generate a set of questions based on the content."
|
23 |
+
|
24 |
+
# Generate questions
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
+
try:
|
27 |
+
outputs = model.generate(**inputs)
|
28 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error processing file: {str(e)}", ""
|
31 |
|
32 |
+
# Extract questions and options (basic implementation, customize as needed)
|
33 |
questions = []
|
34 |
options = []
|
35 |
+
for answer in generated_text.split("."):
|
36 |
if answer.startswith("Q"):
|
37 |
questions.append(answer.strip())
|
38 |
else:
|
39 |
options.append(answer.strip())
|
40 |
|
41 |
+
if not questions:
|
42 |
+
return "No questions found in the uploaded text.", ""
|
43 |
+
|
44 |
return questions, options
|
45 |
|
46 |
+
|
47 |
# Create Gradio interface
|
48 |
question_box = gr.Textbox(label="Questions")
|
49 |
option_box = gr.Textbox(label="Options")
|
|
|
55 |
title="Question and Option Generator"
|
56 |
)
|
57 |
|
58 |
+
iface.launch()
|