Spaces:
Runtime error
Runtime error
sradc
commited on
Commit
·
1801c3b
0
Parent(s):
initial commit
Browse files- .gitattributes +34 -0
- .gitignore +164 -0
- .streamlit/config.toml +5 -0
- README.md +31 -0
- _dev/clip.ipynb +146 -0
- _dev/download_videos.ipynb +80 -0
- _dev/process_video.ipynb +149 -0
- _dev/run_search_over_videos.ipynb +0 -0
- activate +1 -0
- example.py +23 -0
- pipeline/clip_wrapper.py +29 -0
- pipeline/download_videos.py +38 -0
- pipeline/get_video_ids.py +79 -0
- pipeline/process_videos.py +66 -0
- poetry.lock +0 -0
- pyproject.toml +39 -0
- run_pipeline.sh +5 -0
- tests/pipeline/test_clip_wrapper.py +13 -0
- tests/pipeline/test_download_videos.py +10 -0
- video_semantic_search/__init__.py +0 -0
- video_semantic_search/app.py +123 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data
|
2 |
+
|
3 |
+
### Python template
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
share/python-wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
*.py,cover
|
53 |
+
.hypothesis/
|
54 |
+
.pytest_cache/
|
55 |
+
cover/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
.pybuilder/
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
# For a library or package, you might want to ignore these files since the code is
|
90 |
+
# intended to run in multiple environments; otherwise, check them in:
|
91 |
+
# .python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# poetry
|
101 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
+
# commonly ignored for libraries.
|
104 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
+
#poetry.lock
|
106 |
+
|
107 |
+
# pdm
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
+
#pdm.lock
|
110 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
+
# in version control.
|
112 |
+
# https://pdm.fming.dev/#use-with-ide
|
113 |
+
.pdm.toml
|
114 |
+
|
115 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
116 |
+
__pypackages__/
|
117 |
+
|
118 |
+
# Celery stuff
|
119 |
+
celerybeat-schedule
|
120 |
+
celerybeat.pid
|
121 |
+
|
122 |
+
# SageMath parsed files
|
123 |
+
*.sage.py
|
124 |
+
|
125 |
+
# Environments
|
126 |
+
.env
|
127 |
+
.venv
|
128 |
+
env/
|
129 |
+
venv/
|
130 |
+
ENV/
|
131 |
+
env.bak/
|
132 |
+
venv.bak/
|
133 |
+
|
134 |
+
# Spyder project settings
|
135 |
+
.spyderproject
|
136 |
+
.spyproject
|
137 |
+
|
138 |
+
# Rope project settings
|
139 |
+
.ropeproject
|
140 |
+
|
141 |
+
# mkdocs documentation
|
142 |
+
/site
|
143 |
+
|
144 |
+
# mypy
|
145 |
+
.mypy_cache/
|
146 |
+
.dmypy.json
|
147 |
+
dmypy.json
|
148 |
+
|
149 |
+
# Pyre type checker
|
150 |
+
.pyre/
|
151 |
+
|
152 |
+
# pytype static type analyzer
|
153 |
+
.pytype/
|
154 |
+
|
155 |
+
# Cython debug symbols
|
156 |
+
cython_debug/
|
157 |
+
|
158 |
+
# PyCharm
|
159 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
160 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
+
.idea/
|
164 |
+
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[browser]
|
2 |
+
gatherUsageStats = false
|
3 |
+
|
4 |
+
[theme]
|
5 |
+
base="dark"
|
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Visual Content Search Over Videos
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.19.0
|
8 |
+
app_file: video_semantic_search/app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# semvideo-hackathon-230521
|
13 |
+
|
14 |
+
## Project Description
|
15 |
+
|
16 |
+
This project let's you search YouTube videos using a text string. The search is done over the actual video frames,
|
17 |
+
rather than any associated text. The search results are displayed as a list of videos, with the most relevant video
|
18 |
+
shown first. The user can then click on any of the videos to play it.
|
19 |
+
|
20 |
+
## Quick Start
|
21 |
+
|
22 |
+
Run the following commands to get started:
|
23 |
+
|
24 |
+
```bash
|
25 |
+
git clone https://github.com/sradc/semvideo-hackathon-230521.git
|
26 |
+
cd semvideo-hackathon-230521
|
27 |
+
poetry install
|
28 |
+
PYTHONPATH=. poetry run streamlit run video_semantic_search/app.py
|
29 |
+
```
|
30 |
+
|
31 |
+
If you do not have `poetry` installed, refer to the [poetry documentation](https://python-poetry.org/docs/#installation).
|
_dev/clip.ipynb
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 33,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from typing import List\n",
|
10 |
+
"import requests\n",
|
11 |
+
"from PIL import Image\n",
|
12 |
+
"from transformers import CLIPModel, CLIPProcessor, CLIPFeatureExtractor\n",
|
13 |
+
"import torch"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 41,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
|
23 |
+
"image = Image.open(requests.get(url, stream=True).raw)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"class ClipWrapper:\n",
|
33 |
+
" def __init__(self):\n",
|
34 |
+
" self.model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
35 |
+
" self.processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
36 |
+
"\n",
|
37 |
+
" def images2vec(self, images: List[Image.Image]) -> torch.Tensor:\n",
|
38 |
+
" inputs = self.processor(images=images, return_tensors=\"pt\")\n",
|
39 |
+
" with torch.no_grad():\n",
|
40 |
+
" model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}\n",
|
41 |
+
" image_embeds = self.model.vision_model(**model_inputs)\n",
|
42 |
+
" clip_vectors = self.model.visual_projection(image_embeds[1])\n",
|
43 |
+
" return clip_vectors / clip_vectors.norm(dim=-1, keepdim=True)\n",
|
44 |
+
"\n",
|
45 |
+
" def texts2vec(self, texts: List[str]) -> torch.Tensor:\n",
|
46 |
+
" inputs = self.processor(text=texts, return_tensors=\"pt\", padding=True)\n",
|
47 |
+
" with torch.no_grad():\n",
|
48 |
+
" model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}\n",
|
49 |
+
" text_embeds = self.model.text_model(**model_inputs)\n",
|
50 |
+
" text_vectors = self.model.text_projection(text_embeds[1])\n",
|
51 |
+
" return text_vectors / text_vectors.norm(dim=-1, keepdim=True)"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 42,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
61 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 65,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [
|
69 |
+
{
|
70 |
+
"data": {
|
71 |
+
"text/plain": [
|
72 |
+
"torch.Size([2, 512])"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"execution_count": 65,
|
76 |
+
"metadata": {},
|
77 |
+
"output_type": "execute_result"
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"source": [
|
81 |
+
"def images2vec(images: List[Image.Image]) -> torch.Tensor:\n",
|
82 |
+
" inputs = processor(images=images, return_tensors=\"pt\")\n",
|
83 |
+
" with torch.no_grad():\n",
|
84 |
+
" model_inputs = {k: v.to(model.device) for k, v in inputs.items()}\n",
|
85 |
+
" image_embeds = model.vision_model(**model_inputs)\n",
|
86 |
+
" clip_vectors = model.visual_projection(image_embeds[1])\n",
|
87 |
+
" return clip_vectors / clip_vectors.norm(dim=-1, keepdim=True)\n",
|
88 |
+
"\n",
|
89 |
+
"\n",
|
90 |
+
"result = images2vec([image, image])\n",
|
91 |
+
"result.shape"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 70,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"text/plain": [
|
102 |
+
"torch.Size([2, 512])"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 70,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"def texts2vec(texts: List[str]) -> torch.Tensor:\n",
|
112 |
+
" inputs = processor(text=texts, return_tensors=\"pt\", padding=True)\n",
|
113 |
+
" with torch.no_grad():\n",
|
114 |
+
" model_inputs = {k: v.to(model.device) for k, v in inputs.items()}\n",
|
115 |
+
" text_embeds = model.text_model(**model_inputs)\n",
|
116 |
+
" text_vectors = model.text_projection(text_embeds[1])\n",
|
117 |
+
" return text_vectors / text_vectors.norm(dim=-1, keepdim=True)\n",
|
118 |
+
"\n",
|
119 |
+
"\n",
|
120 |
+
"texts2vec([\"a photo of a cat\", \"a photo of a dog\"]).shape"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"metadata": {
|
125 |
+
"kernelspec": {
|
126 |
+
"display_name": "semvideo-hackathon-230523",
|
127 |
+
"language": "python",
|
128 |
+
"name": "python3"
|
129 |
+
},
|
130 |
+
"language_info": {
|
131 |
+
"codemirror_mode": {
|
132 |
+
"name": "ipython",
|
133 |
+
"version": 3
|
134 |
+
},
|
135 |
+
"file_extension": ".py",
|
136 |
+
"mimetype": "text/x-python",
|
137 |
+
"name": "python",
|
138 |
+
"nbconvert_exporter": "python",
|
139 |
+
"pygments_lexer": "ipython3",
|
140 |
+
"version": "3.9.16"
|
141 |
+
},
|
142 |
+
"orig_nbformat": 4
|
143 |
+
},
|
144 |
+
"nbformat": 4,
|
145 |
+
"nbformat_minor": 2
|
146 |
+
}
|
_dev/download_videos.ipynb
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 22,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import subprocess\n",
|
10 |
+
"from pathlib import Path\n",
|
11 |
+
"import re\n",
|
12 |
+
"\n",
|
13 |
+
"from tqdm import tqdm\n",
|
14 |
+
"\n",
|
15 |
+
"import pipeline.videos as videos"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 23,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [
|
23 |
+
{
|
24 |
+
"name": "stderr",
|
25 |
+
"output_type": "stream",
|
26 |
+
"text": [
|
27 |
+
"100%|██████████| 1/1 [00:02<00:00, 2.37s/it]\n"
|
28 |
+
]
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"source": [
|
32 |
+
"VIDEO_DIR = Path(\"videos\")\n",
|
33 |
+
"VIDEO_DIR.mkdir(exist_ok=True)\n",
|
34 |
+
"(VIDEO_DIR / \".gitingore\").write_text(\"**\")\n",
|
35 |
+
"\n",
|
36 |
+
"video_urls = [\"https://www.youtube.com/watch?v=frYIj2FGmMA&foo=bar\"]\n",
|
37 |
+
"\n",
|
38 |
+
"\n",
|
39 |
+
"def get_id(url: str) -> str:\n",
|
40 |
+
" return re.search(r\"(?<=v=)[^&]+\", url).group(0)\n",
|
41 |
+
"\n",
|
42 |
+
"\n",
|
43 |
+
"for video_url in tqdm(video_urls):\n",
|
44 |
+
" video_id = get_id(video_url)\n",
|
45 |
+
" video_path = VIDEO_DIR / f\"{video_id}.mp4\"\n",
|
46 |
+
" if video_path.exists():\n",
|
47 |
+
" print(f\"Skipping {video_path} because it already exists\")\n",
|
48 |
+
" continue\n",
|
49 |
+
" subprocess.run([\"yt-dlp\", \"--quiet\", \"-f\", \"133\", \"-o\", str(video_path), video_url])\n",
|
50 |
+
"\n",
|
51 |
+
"# get_id(video_urls[0])\n",
|
52 |
+
"# # !yt-dlp -f 133 -o \"buster.mp4\" {video_url}\n",
|
53 |
+
"# def download_video(video_url: str) -> None:\n",
|
54 |
+
"# subprocess.run(['yt-dlp', '-f', '133', '-o', 'buster.mp4', video_url])"
|
55 |
+
]
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"metadata": {
|
59 |
+
"kernelspec": {
|
60 |
+
"display_name": "semvideo-hackathon-230523",
|
61 |
+
"language": "python",
|
62 |
+
"name": "python3"
|
63 |
+
},
|
64 |
+
"language_info": {
|
65 |
+
"codemirror_mode": {
|
66 |
+
"name": "ipython",
|
67 |
+
"version": 3
|
68 |
+
},
|
69 |
+
"file_extension": ".py",
|
70 |
+
"mimetype": "text/x-python",
|
71 |
+
"name": "python",
|
72 |
+
"nbconvert_exporter": "python",
|
73 |
+
"pygments_lexer": "ipython3",
|
74 |
+
"version": "3.9.16"
|
75 |
+
},
|
76 |
+
"orig_nbformat": 4
|
77 |
+
},
|
78 |
+
"nbformat": 4,
|
79 |
+
"nbformat_minor": 2
|
80 |
+
}
|
_dev/process_video.ipynb
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/Users/sidneyradcliffe/miniforge3/envs/semvideo-hackathon-230523/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"\n",
|
20 |
+
"import pandas as pd\n",
|
21 |
+
"import cv2\n",
|
22 |
+
"from PIL import Image\n",
|
23 |
+
"import numpy as np\n",
|
24 |
+
"\n",
|
25 |
+
"from pipeline.clip_wrapper import ClipWrapper, MODEL_DIM\n",
|
26 |
+
"from pipeline.download_videos import VIDEO_DIR, REPO_ROOT, DATA_DIR\n",
|
27 |
+
"\n",
|
28 |
+
"FRAME_EXTRACT_RATE_SECONDS = 5 # Extract a frame every 5 seconds\n",
|
29 |
+
"IMAGES_DIR = DATA_DIR / \"images\"\n",
|
30 |
+
"\n",
|
31 |
+
"DATAFRAME_PATH = DATA_DIR / \"dataset.parquet\""
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 2,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"clip_wrapper = ClipWrapper()"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 3,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"def get_clip_vectors(video_path):\n",
|
50 |
+
" cap = cv2.VideoCapture(str(video_path))\n",
|
51 |
+
" num_video_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
|
52 |
+
" fps = int(cap.get(cv2.CAP_PROP_FPS))\n",
|
53 |
+
" extract_every_n_frames = FRAME_EXTRACT_RATE_SECONDS * fps\n",
|
54 |
+
" for frame_idx in tqdm(range(num_video_frames), desc=\"Running CLIP on video\"):\n",
|
55 |
+
" ret, frame = cap.read()\n",
|
56 |
+
" if frame_idx % extract_every_n_frames != 0:\n",
|
57 |
+
" continue\n",
|
58 |
+
" image = Image.fromarray(frame[..., ::-1])\n",
|
59 |
+
" clip_vector = clip_wrapper.images2vec([image]).squeeze().numpy()\n",
|
60 |
+
" timestamp_secs = frame_idx / fps\n",
|
61 |
+
" yield clip_vector, image, timestamp_secs, frame_idx\n",
|
62 |
+
" cap.release()"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": 4,
|
68 |
+
"metadata": {},
|
69 |
+
"outputs": [
|
70 |
+
{
|
71 |
+
"name": "stderr",
|
72 |
+
"output_type": "stream",
|
73 |
+
"text": [
|
74 |
+
"Running CLIP on video: 100%|██████████| 7465/7465 [00:04<00:00, 1759.86it/s]\n",
|
75 |
+
"Running CLIP on video: 100%|██████████| 6056/6056 [00:03<00:00, 1728.62it/s]\n",
|
76 |
+
"Running CLIP on video: 100%|██████████| 5234/5234 [00:03<00:00, 1648.12it/s]\n",
|
77 |
+
"Running CLIP on video: 100%|██████████| 3551/3551 [00:01<00:00, 1806.30it/s]\n",
|
78 |
+
"Running CLIP on video: 100%|██████████| 5904/5904 [00:03<00:00, 1655.01it/s]\n",
|
79 |
+
"Processing videos: 100%|██████████| 5/5 [00:16<00:00, 3.30s/it]"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"name": "stdout",
|
84 |
+
"output_type": "stream",
|
85 |
+
"text": [
|
86 |
+
"Saving data to /Users/sidneyradcliffe/repos/semvideo-hackathon-230523/data/dataset.parquet\n"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"name": "stderr",
|
91 |
+
"output_type": "stream",
|
92 |
+
"text": [
|
93 |
+
"\n"
|
94 |
+
]
|
95 |
+
}
|
96 |
+
],
|
97 |
+
"source": [
|
98 |
+
"results = []\n",
|
99 |
+
"for i, video_path in enumerate(\n",
|
100 |
+
" tqdm(list(VIDEO_DIR.glob(\"*.mp4\")), desc=\"Processing videos\")\n",
|
101 |
+
"):\n",
|
102 |
+
" video_id = video_path.stem\n",
|
103 |
+
" extracted_images_dir = IMAGES_DIR / video_id\n",
|
104 |
+
" extracted_images_dir.mkdir(exist_ok=True, parents=True)\n",
|
105 |
+
" for clip_vector, image, timestamp_secs, frame_idx in get_clip_vectors(video_path):\n",
|
106 |
+
" image_path = extracted_images_dir / f\"{frame_idx}.jpg\"\n",
|
107 |
+
" image.save(image_path)\n",
|
108 |
+
" results.append(\n",
|
109 |
+
" [\n",
|
110 |
+
" video_id,\n",
|
111 |
+
" frame_idx,\n",
|
112 |
+
" timestamp_secs,\n",
|
113 |
+
" str(image_path.relative_to(REPO_ROOT)),\n",
|
114 |
+
" *clip_vector,\n",
|
115 |
+
" ]\n",
|
116 |
+
" )\n",
|
117 |
+
"df = pd.DataFrame(\n",
|
118 |
+
" results,\n",
|
119 |
+
" columns=[\"video_id\", \"frame_idx\", \"timestamp\", \"image_path\"]\n",
|
120 |
+
" + [f\"dim_{i}\" for i in range(MODEL_DIM)],\n",
|
121 |
+
")\n",
|
122 |
+
"print(f\"Saving data to {DATAFRAME_PATH}\")\n",
|
123 |
+
"df.to_parquet(DATAFRAME_PATH, index=False)"
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"metadata": {
|
128 |
+
"kernelspec": {
|
129 |
+
"display_name": "semvideo-hackathon-230523",
|
130 |
+
"language": "python",
|
131 |
+
"name": "python3"
|
132 |
+
},
|
133 |
+
"language_info": {
|
134 |
+
"codemirror_mode": {
|
135 |
+
"name": "ipython",
|
136 |
+
"version": 3
|
137 |
+
},
|
138 |
+
"file_extension": ".py",
|
139 |
+
"mimetype": "text/x-python",
|
140 |
+
"name": "python",
|
141 |
+
"nbconvert_exporter": "python",
|
142 |
+
"pygments_lexer": "ipython3",
|
143 |
+
"version": "3.9.16"
|
144 |
+
},
|
145 |
+
"orig_nbformat": 4
|
146 |
+
},
|
147 |
+
"nbformat": 4,
|
148 |
+
"nbformat_minor": 2
|
149 |
+
}
|
_dev/run_search_over_videos.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
activate
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conda activate semvideo-hackathon-230523
|
example.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import CLIPModel, CLIPProcessor
|
4 |
+
|
5 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
6 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
7 |
+
|
8 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
9 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
10 |
+
|
11 |
+
inputs = processor(
|
12 |
+
text=["a photo of a cat", "a photo of a dog"],
|
13 |
+
images=image,
|
14 |
+
return_tensors="pt",
|
15 |
+
padding=True,
|
16 |
+
)
|
17 |
+
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
20 |
+
probs = logits_per_image.softmax(
|
21 |
+
dim=1
|
22 |
+
) # we can take the softmax to get the label probabilities
|
23 |
+
print(probs)
|
pipeline/clip_wrapper.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import CLIPModel, CLIPProcessor
|
6 |
+
|
7 |
+
MODEL_DIM = 512
|
8 |
+
|
9 |
+
|
10 |
+
class ClipWrapper:
|
11 |
+
def __init__(self):
|
12 |
+
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
+
|
15 |
+
def images2vec(self, images: List[Image.Image]) -> torch.Tensor:
|
16 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
17 |
+
with torch.no_grad():
|
18 |
+
model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
19 |
+
image_embeds = self.model.vision_model(**model_inputs)
|
20 |
+
clip_vectors = self.model.visual_projection(image_embeds[1])
|
21 |
+
return clip_vectors / clip_vectors.norm(dim=-1, keepdim=True)
|
22 |
+
|
23 |
+
def texts2vec(self, texts: List[str]) -> torch.Tensor:
|
24 |
+
inputs = self.processor(text=texts, return_tensors="pt", padding=True)
|
25 |
+
with torch.no_grad():
|
26 |
+
model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
27 |
+
text_embeds = self.model.text_model(**model_inputs)
|
28 |
+
text_vectors = self.model.text_projection(text_embeds[1])
|
29 |
+
return text_vectors / text_vectors.norm(dim=-1, keepdim=True)
|
pipeline/download_videos.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import subprocess
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
REPO_ROOT = Path(__file__).parents[1].resolve()
|
9 |
+
DATA_DIR = REPO_ROOT / "data"
|
10 |
+
VIDEO_DIR = DATA_DIR / "videos"
|
11 |
+
VIDEO_ID_FOLDER = DATA_DIR / "ids"
|
12 |
+
|
13 |
+
|
14 |
+
def get_id(url: str) -> str:
|
15 |
+
return re.search(r"(?<=v=)[^&]+", url).group(0)
|
16 |
+
|
17 |
+
|
18 |
+
def download_videos(video_ids: List[str]) -> None:
|
19 |
+
VIDEO_DIR.mkdir(exist_ok=True, parents=True)
|
20 |
+
for video_id in tqdm(video_ids):
|
21 |
+
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
22 |
+
video_path = VIDEO_DIR / f"{video_id}.mp4"
|
23 |
+
if video_path.exists():
|
24 |
+
print(f"Skipping {video_path} because it already exists")
|
25 |
+
continue
|
26 |
+
subprocess.run(
|
27 |
+
["yt-dlp", "--quiet", "-f", "135", "-o", str(video_path), video_url]
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
print("Downloading videos...")
|
33 |
+
ids = set()
|
34 |
+
for file in VIDEO_ID_FOLDER.glob("*.txt"):
|
35 |
+
ids.update(
|
36 |
+
[x for x in file.read_text().strip().splitlines(keepends=False) if x]
|
37 |
+
)
|
38 |
+
download_videos(ids)
|
pipeline/get_video_ids.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Final, Optional
|
6 |
+
|
7 |
+
import youtube_dl
|
8 |
+
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO,
|
11 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
12 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
13 |
+
)
|
14 |
+
|
15 |
+
PLAYLIST_URLS = [
|
16 |
+
"https://www.youtube.com/playlist?list=PL6Lt9p1lIRZ311J9ZHuzkR5A3xesae2pk", # 570, Alternative rock of the 2000s (2000-2009)
|
17 |
+
"https://www.youtube.com/playlist?list=PLMC9KNkIncKtGvr2kFRuXBVmBev6cAJ2u", # 250, Best Pop Music Videos - Top Pop Hits Playlist
|
18 |
+
"https://www.youtube.com/playlist?list=PLmXxqSJJq-yXrCPGIT2gn8b34JjOrl4Xf", # 184, 80s Music Hits | Best 80s Music Playlist
|
19 |
+
"https://www.youtube.com/playlist?list=PL7DA3D097D6FDBC02", # 150, 90's Hits - Greatest 1990's Music Hits (Best 90’s Songs Playlist)
|
20 |
+
"https://www.youtube.com/playlist?list=PLeDakahyfrO-4kuBioL5ZAoy4j6aCnzWy", # 100, Best Music Videos of All Time
|
21 |
+
"https://www.youtube.com/playlist?list=PLMC9KNkIncKtPzgY-5rmhvj7fax8fdxoj", # 200, Pop Music Playlist - Timeless Pop Songs (Updated Weekly 2023)
|
22 |
+
"https://www.youtube.com/playlist?list=PLkqz3S84Tw-RfPS9HHi3MRmrinOBKxIr8", # 82, Top POP Hits 2022 – Biggest Pop Music Videos - Vevo
|
23 |
+
"https://www.youtube.com/playlist?list=PLyORnIW1xT6wqvszJbCdLdSjylYMf3sNZ", # 100, Top 100 Music Videos 2023 - Best Music Videos 2023
|
24 |
+
"https://www.youtube.com/playlist?list=PL1Mmsa-U48mea1oIN-Eus78giJANx4D9W", # 119, 90s Music Videos
|
25 |
+
"https://www.youtube.com/playlist?list=PLurPBtLcqJqcg3r-HOhR3LZ0aDxpI15Fa", # 100, 100 Best Music Videos Of The Decade: 2010 - 2019
|
26 |
+
"https://www.youtube.com/playlist?list=PLCQCtoOJpI_A5oktQImEdDBJ50BqHXujj", # 495, MTV Classic 2000's music videos (US Version)
|
27 |
+
]
|
28 |
+
URL_FILE: Final[Optional[str]] = os.environ.get("URL_FILE")
|
29 |
+
OUTPUT_DIR: Final[str] = os.environ.get("OUTPUT_DIR", "data/ids")
|
30 |
+
|
31 |
+
|
32 |
+
def get_all_video_ids(channel_url: str) -> list[str]:
|
33 |
+
"""Get all video IDs from a YouTube channel or playlist URL.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
channel_url (str): URL of the YouTube channel or playlist.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
list[str]: List of video IDs.
|
40 |
+
|
41 |
+
Notes:
|
42 |
+
If you want the videos from a channel, make sure to pass the `/videos` endpoint of the channel.
|
43 |
+
"""
|
44 |
+
ydl_opts = {
|
45 |
+
"ignoreerrors": True,
|
46 |
+
"extract_flat": "in_playlist",
|
47 |
+
"dump_single_json": True,
|
48 |
+
"quiet": True,
|
49 |
+
}
|
50 |
+
|
51 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
52 |
+
playlist_info = ydl.extract_info(channel_url, download=False)
|
53 |
+
video_ids = [video["id"] for video in playlist_info["entries"] if "id" in video]
|
54 |
+
|
55 |
+
return video_ids
|
56 |
+
|
57 |
+
|
58 |
+
def process_youtube_url(url: str):
|
59 |
+
logging.info(f"Processing {url}")
|
60 |
+
ids = get_all_video_ids(url)
|
61 |
+
|
62 |
+
output_dir = Path(OUTPUT_DIR)
|
63 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
64 |
+
|
65 |
+
output = "\n".join(ids)
|
66 |
+
output_path = output_dir / f"{hashlib.md5(output.encode()).hexdigest()}.txt"
|
67 |
+
logging.info(f"Writing {len(ids)} video IDs to {output_path}")
|
68 |
+
with output_path.open(mode="w") as f:
|
69 |
+
f.write(output)
|
70 |
+
|
71 |
+
|
72 |
+
def main():
|
73 |
+
logging.info(f"Processing {len(PLAYLIST_URLS)} URLs")
|
74 |
+
for url in PLAYLIST_URLS:
|
75 |
+
process_youtube_url(url)
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
main()
|
pipeline/process_videos.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import pandas as pd
|
3 |
+
from PIL import Image
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
from pipeline.clip_wrapper import MODEL_DIM, ClipWrapper
|
7 |
+
from pipeline.download_videos import DATA_DIR, REPO_ROOT, VIDEO_DIR
|
8 |
+
|
9 |
+
FRAME_EXTRACT_RATE_SECONDS = 5 # Extract a frame every 5 seconds
|
10 |
+
IMAGES_DIR = DATA_DIR / "images"
|
11 |
+
DATAFRAME_PATH = DATA_DIR / "dataset.parquet"
|
12 |
+
|
13 |
+
|
14 |
+
def process_videos() -> None:
|
15 |
+
"Runs clip on video frames, saves results to a parquet file"
|
16 |
+
clip_wrapper = ClipWrapper()
|
17 |
+
results = []
|
18 |
+
for video_path in tqdm(list(VIDEO_DIR.glob("*.mp4")), desc="Processing videos"):
|
19 |
+
video_id = video_path.stem
|
20 |
+
extracted_images_dir = IMAGES_DIR / video_id
|
21 |
+
extracted_images_dir.mkdir(exist_ok=True, parents=True)
|
22 |
+
complete_file = extracted_images_dir / "complete"
|
23 |
+
if complete_file.exists():
|
24 |
+
continue
|
25 |
+
for clip_vector, image, timestamp_secs, frame_idx in get_clip_vectors(
|
26 |
+
video_path, clip_wrapper
|
27 |
+
):
|
28 |
+
image_path = extracted_images_dir / f"{frame_idx}.jpg"
|
29 |
+
image.save(image_path)
|
30 |
+
results.append(
|
31 |
+
[
|
32 |
+
video_id,
|
33 |
+
frame_idx,
|
34 |
+
timestamp_secs,
|
35 |
+
str(image_path.relative_to(REPO_ROOT)),
|
36 |
+
*clip_vector,
|
37 |
+
]
|
38 |
+
)
|
39 |
+
complete_file.touch()
|
40 |
+
df = pd.DataFrame(
|
41 |
+
results,
|
42 |
+
columns=["video_id", "frame_idx", "timestamp", "image_path"]
|
43 |
+
+ [f"dim_{i}" for i in range(MODEL_DIM)],
|
44 |
+
)
|
45 |
+
print(f"Saving data to {DATAFRAME_PATH}")
|
46 |
+
df.to_parquet(DATAFRAME_PATH, index=False)
|
47 |
+
|
48 |
+
|
49 |
+
def get_clip_vectors(video_path, clip_wrapper):
|
50 |
+
cap = cv2.VideoCapture(str(video_path))
|
51 |
+
num_video_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
52 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
53 |
+
extract_every_n_frames = FRAME_EXTRACT_RATE_SECONDS * fps
|
54 |
+
for frame_idx in tqdm(range(num_video_frames), desc="Running CLIP on video"):
|
55 |
+
ret, frame = cap.read()
|
56 |
+
if frame_idx % extract_every_n_frames != 0:
|
57 |
+
continue
|
58 |
+
image = Image.fromarray(frame[..., ::-1])
|
59 |
+
clip_vector = clip_wrapper.images2vec([image]).squeeze().numpy()
|
60 |
+
timestamp_secs = frame_idx / fps
|
61 |
+
yield clip_vector, image, timestamp_secs, frame_idx
|
62 |
+
cap.release()
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
process_videos()
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "video-semantic-search"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Ben Tenmann <[email protected]>", "Sidney Radcliffe <[email protected]>"]
|
6 |
+
license = "MIT"
|
7 |
+
readme = "README.md"
|
8 |
+
packages = [{include = "video_semantic_search"}]
|
9 |
+
|
10 |
+
[tool.poetry.dependencies]
|
11 |
+
python = ">=3.9,<3.9.7 || >3.9.7,<4.0"
|
12 |
+
streamlit = "^1.22.0"
|
13 |
+
pandas = "^2.0.1"
|
14 |
+
pyarrow = "^12.0.0"
|
15 |
+
# need to pin faiss-cpu to 1.6.5 because of segfaults when interacting with streamlit
|
16 |
+
# https://github.com/facebookresearch/faiss/issues/2099#issuecomment-961172708
|
17 |
+
# sidney use 1.7.4
|
18 |
+
faiss-cpu = "==1.7.4"
|
19 |
+
transformers = "^4.29.2"
|
20 |
+
torch = "^2.0.1"
|
21 |
+
torchvision = "^0.15.2"
|
22 |
+
urllib3 = "1.26.15"
|
23 |
+
yt-dlp = "^2023.3.4"
|
24 |
+
tqdm = "^4.65.0"
|
25 |
+
opencv-python = "^4.7.0.72"
|
26 |
+
youtube-dl = "^2021.12.17"
|
27 |
+
|
28 |
+
[tool.poetry.group.dev.dependencies]
|
29 |
+
notebook = "^6.5.4"
|
30 |
+
black = {extras = ["jupyter"], version = "^23.3.0"}
|
31 |
+
isort = "^5.12.0"
|
32 |
+
pytest = "^7.3.1"
|
33 |
+
jupyterlab = "^4.0.0"
|
34 |
+
nbconvert = "^7.4.0"
|
35 |
+
jupyter-contrib-nbextensions = "^0.7.0"
|
36 |
+
|
37 |
+
[build-system]
|
38 |
+
requires = ["poetry-core"]
|
39 |
+
build-backend = "poetry.core.masonry.api"
|
run_pipeline.sh
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
set -e
|
3 |
+
|
4 |
+
poetry run python pipeline/download_videos.py
|
5 |
+
poetry run python pipeline/process_videos.py
|
tests/pipeline/test_clip_wrapper.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from pipeline.clip_wrapper import ClipWrapper
|
4 |
+
|
5 |
+
|
6 |
+
def test_ClipWrapper():
|
7 |
+
clip_wrapper = ClipWrapper()
|
8 |
+
|
9 |
+
images = [torch.rand(3, 224, 224) for _ in range(2)]
|
10 |
+
assert clip_wrapper.images2vec(images).shape[-1] == 512
|
11 |
+
|
12 |
+
texts = ["a photo of a cat", "a photo of a dog"]
|
13 |
+
assert clip_wrapper.texts2vec(texts).shape[-1] == 512
|
tests/pipeline/test_download_videos.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pipeline.download_videos import get_id
|
2 |
+
|
3 |
+
|
4 |
+
def test_get_id():
|
5 |
+
url1 = "https://www.youtube.com/watch?v=frYIj2FGmMA&foo=bar"
|
6 |
+
url2 = "https://www.youtube.com/watch?v=abcdefg"
|
7 |
+
url3 = "https://www.youtube.com/watch?foo=bar&v=xyz123"
|
8 |
+
assert get_id(url1) == "frYIj2FGmMA"
|
9 |
+
assert get_id(url2) == "abcdefg"
|
10 |
+
assert get_id(url3) == "xyz123"
|
video_semantic_search/__init__.py
ADDED
File without changes
|
video_semantic_search/app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Final
|
5 |
+
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
from pipeline import clip_wrapper
|
12 |
+
|
13 |
+
|
14 |
+
class SemanticSearcher:
|
15 |
+
def __init__(self, dataset: pd.DataFrame):
|
16 |
+
dim_columns = dataset.filter(regex="^dim_").columns
|
17 |
+
|
18 |
+
self.embedder = clip_wrapper.ClipWrapper().texts2vec
|
19 |
+
self.metadata = dataset.drop(columns=dim_columns)
|
20 |
+
self.index = faiss.IndexFlatIP(len(dim_columns))
|
21 |
+
self.index.add(np.ascontiguousarray(dataset[dim_columns].to_numpy(np.float32)))
|
22 |
+
|
23 |
+
def search(self, query: str) -> list["SearchResult"]:
|
24 |
+
v = self.embedder([query]).detach().numpy()
|
25 |
+
D, I = self.index.search(v, 10)
|
26 |
+
return [
|
27 |
+
SearchResult(
|
28 |
+
video_id=row["video_id"],
|
29 |
+
frame_idx=row["frame_idx"],
|
30 |
+
timestamp=row["timestamp"],
|
31 |
+
score=score,
|
32 |
+
)
|
33 |
+
for score, (_, row) in zip(D[0], self.metadata.iloc[I[0]].iterrows())
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
DATASET_PATH: Final[str] = os.environ.get("DATASET_PATH", "data/dataset.parquet")
|
38 |
+
SEARCHER: Final[SemanticSearcher] = SemanticSearcher(pd.read_parquet(DATASET_PATH))
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class SearchResult:
|
43 |
+
video_id: str
|
44 |
+
frame_idx: int
|
45 |
+
timestamp: float
|
46 |
+
score: float
|
47 |
+
|
48 |
+
|
49 |
+
def get_video_url(video_id: str, timestamp: float) -> str:
|
50 |
+
return f"https://www.youtube.com/watch?v={video_id}&t={int(timestamp)}"
|
51 |
+
|
52 |
+
|
53 |
+
def display_search_results(results: list[SearchResult]) -> None:
|
54 |
+
col_count = 3 # Number of videos per row
|
55 |
+
|
56 |
+
col_num = 0 # Counter to keep track of the current column
|
57 |
+
row = st.empty() # Placeholder for the current row
|
58 |
+
|
59 |
+
for i, result in enumerate(results):
|
60 |
+
if col_num == 0:
|
61 |
+
row = st.columns(col_count) # Create a new row of columns
|
62 |
+
|
63 |
+
with row[col_num]:
|
64 |
+
# Apply CSS styling to the video container
|
65 |
+
st.markdown(
|
66 |
+
"""
|
67 |
+
<style>
|
68 |
+
.video-container {
|
69 |
+
position: relative;
|
70 |
+
padding-bottom: 56.25%;
|
71 |
+
padding-top: 30px;
|
72 |
+
height: 0;
|
73 |
+
overflow: hidden;
|
74 |
+
}
|
75 |
+
.video-container iframe,
|
76 |
+
.video-container object,
|
77 |
+
.video-container embed {
|
78 |
+
position: absolute;
|
79 |
+
top: 0;
|
80 |
+
left: 0;
|
81 |
+
width: 100%;
|
82 |
+
height: 100%;
|
83 |
+
}
|
84 |
+
</style>
|
85 |
+
""",
|
86 |
+
unsafe_allow_html=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Display the embedded YouTube video
|
90 |
+
# st.video(get_video_url(result.video_id), start_time=int(result.timestamp))
|
91 |
+
# st.image(f"data/images/{result.video_id}/{result.frame_idx}.jpg")
|
92 |
+
with open(
|
93 |
+
f"data/images/{result.video_id}/{result.frame_idx}.jpg", "rb"
|
94 |
+
) as f:
|
95 |
+
image = f.read()
|
96 |
+
encoded = base64.b64encode(image).decode()
|
97 |
+
st.markdown(
|
98 |
+
f"""
|
99 |
+
<a href="{get_video_url(result.video_id, result.timestamp)}">
|
100 |
+
<img src="data:image/jpeg;base64,{encoded}" alt="frame {result.frame_idx}" width="100%">
|
101 |
+
</a>
|
102 |
+
""",
|
103 |
+
unsafe_allow_html=True,
|
104 |
+
)
|
105 |
+
|
106 |
+
col_num += 1
|
107 |
+
if col_num >= col_count:
|
108 |
+
col_num = 0
|
109 |
+
|
110 |
+
|
111 |
+
def main():
|
112 |
+
st.set_page_config(page_title="video-semantic-search", layout="wide")
|
113 |
+
st.header("Video Semantic Search")
|
114 |
+
|
115 |
+
st.text_input("What are you looking for?", key="query")
|
116 |
+
|
117 |
+
query = st.session_state["query"]
|
118 |
+
if query:
|
119 |
+
display_search_results(SEARCHER.search(query))
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
main()
|