|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(self.expansion * planes), |
|
) |
|
|
|
def forward(self, x): |
|
out = torch.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = torch.relu(out) |
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d( |
|
planes, self.expansion * planes, kernel_size=1, bias=False |
|
) |
|
self.bn3 = nn.BatchNorm2d(self.expansion * planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(self.expansion * planes), |
|
) |
|
|
|
def forward(self, x): |
|
out = torch.relu(self.bn1(self.conv1(x))) |
|
out = torch.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
out += self.shortcut(x) |
|
out = torch.relu(out) |
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, num_blocks, num_classes=1000, K=10, T=0.5): |
|
super(ResNet, self).__init__() |
|
self.in_planes = 64 |
|
self.K = K |
|
self.T = T |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def t_max_avg_pooling(self, x): |
|
B, C, H, W = x.shape |
|
x_flat = x.view(B, C, -1) |
|
top_k_values, _ = torch.topk(x_flat, self.K, dim=2) |
|
max_values = top_k_values.max(dim=2)[0] |
|
avg_values = top_k_values.mean(dim=2) |
|
output = torch.where(max_values >= self.T, max_values, avg_values) |
|
return output |
|
|
|
def forward(self, x): |
|
out = torch.relu(self.bn1(self.conv1(x))) |
|
out = self.maxpool(out) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = self.t_max_avg_pooling(out) |
|
out = out.view(out.size(0), -1) |
|
out = self.fc(out) |
|
return out |
|
|
|
|
|
def ResNet18(num_classes=1000, K=10, T=0.5): |
|
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes, K, T) |
|
|
|
|
|
def ResNet34(num_classes=1000, K=10, T=0.5): |
|
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes, K, T) |
|
|
|
|
|
def ResNet50(num_classes=1000, K=10, T=0.5): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes, K, T) |
|
|
|
|
|
def ResNet101(num_classes=1000, K=10, T=0.5): |
|
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes, K, T) |
|
|
|
|
|
def ResNet152(num_classes=1000, K=10, T=0.5): |
|
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes, K, T) |
|
|