Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += self.shortcut(x) | |
out = torch.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, in_planes, planes, stride=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d( | |
planes, self.expansion * planes, kernel_size=1, bias=False | |
) | |
self.bn3 = nn.BatchNorm2d(self.expansion * planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = torch.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
out += self.shortcut(x) | |
out = torch.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, num_blocks, num_classes=1000): | |
super(ResNet, self).__init__() | |
self.in_planes = 64 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = self.maxpool(out) | |
out = self.layer1(out) | |
out = self.layer2(out) | |
out = self.layer3(out) | |
out = self.layer4(out) | |
out = self.avgpool(out) | |
out = torch.flatten(out, 1) | |
out = self.fc(out) | |
return out | |
def ResNet18(num_classes=1000): | |
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes) | |
def ResNet34(num_classes=1000): | |
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes) | |
def ResNet50(num_classes=1000): | |
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes) | |
def ResNet101(num_classes=1000): | |
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes) | |
def ResNet152(num_classes=1000): | |
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes) | |
class ClassifierHead(nn.Module): | |
def __init__(self, in_features, num_classes): | |
super().__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.max_pool = nn.AdaptiveMaxPool2d((1, 1)) | |
self.classifier = nn.Sequential( | |
nn.Linear(in_features * 2, 1024), | |
nn.BatchNorm1d(1024), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Linear(1024, 512), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Dropout(0.3), | |
nn.Linear(512, num_classes), | |
) | |
def forward(self, x): | |
avg_pooled = self.avg_pool(x).flatten(1) | |
max_pooled = self.max_pool(x).flatten(1) | |
features = torch.cat([avg_pooled, max_pooled], dim=1) | |
return self.classifier(features) | |
class ResNetUNet(ResNet): | |
def __init__(self, block, num_blocks, num_classes=1000): | |
super().__init__(block, num_blocks, num_classes) | |
# Calculate encoder channel sizes | |
self.enc_channels = [ | |
64, | |
64 * block.expansion, | |
128 * block.expansion, | |
256 * block.expansion, | |
512 * block.expansion, | |
] | |
# Replace t_max_avg_pooling with standard avgpool | |
in_features = 512 * block.expansion | |
self.classifier_head = ClassifierHead(in_features, num_classes) | |
# Decoder layers remain the same | |
self.decoder5 = nn.Sequential( | |
nn.Conv2d(2048 + 1024, 1024, 3, padding=1), | |
nn.BatchNorm2d(1024), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(1024, 512, 3, padding=1), | |
nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True), | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), | |
) | |
self.decoder4 = nn.Sequential( | |
nn.Conv2d(512 + 512, 512, 3, padding=1), | |
nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, 256, 3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), | |
) | |
self.decoder3 = nn.Sequential( | |
nn.Conv2d(256 + 256, 256, 3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 128, 3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), | |
) | |
self.decoder2 = nn.Sequential( | |
nn.Conv2d(128 + 64, 128, 3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 64, 3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), | |
) | |
self.final_conv = nn.Sequential( | |
nn.Conv2d(64, 32, 3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(32, 1, 1), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
input_size = x.shape[-2:] | |
# Encoder path | |
x = torch.relu(self.bn1(self.conv1(x))) | |
e1 = self.maxpool(x) | |
e2 = self.layer1(e1) | |
e3 = self.layer2(e2) | |
e4 = self.layer3(e3) | |
e5 = self.layer4(e4) | |
# Get segmentation first | |
e4_resized = F.interpolate( | |
e4, size=e5.shape[-2:], mode="bilinear", align_corners=True | |
) | |
d5 = self.decoder5(torch.cat([e5, e4_resized], dim=1)) | |
e3_resized = F.interpolate( | |
e3, size=d5.shape[-2:], mode="bilinear", align_corners=True | |
) | |
d4 = self.decoder4(torch.cat([d5, e3_resized], dim=1)) | |
e2_resized = F.interpolate( | |
e2, size=d4.shape[-2:], mode="bilinear", align_corners=True | |
) | |
d3 = self.decoder3(torch.cat([d4, e2_resized], dim=1)) | |
e1_resized = F.interpolate( | |
e1, size=d3.shape[-2:], mode="bilinear", align_corners=True | |
) | |
d2 = self.decoder2(torch.cat([d3, e1_resized], dim=1)) | |
seg_out = self.final_conv(d2) | |
seg_out = F.interpolate( | |
seg_out, size=input_size, mode="bilinear", align_corners=True | |
) | |
# Use segmentation to mask features before classification | |
# Upsample segmentation mask to match feature size | |
attention_mask = F.interpolate( | |
seg_out, size=e5.shape[2:], mode="bilinear", align_corners=True | |
) | |
# Apply attention mask to features | |
attended_features = e5 * (0.25 + attention_mask) | |
# Use new classifier head | |
cls_out = self.classifier_head(attended_features) | |
return cls_out, seg_out | |
# Helper functions without K and T parameters | |
def ResNet18UNet(num_classes=1000): | |
return ResNetUNet(BasicBlock, [2, 2, 2, 2], num_classes) | |
def ResNet34UNet(num_classes=1000): | |
return ResNetUNet(BasicBlock, [3, 4, 6, 3], num_classes) | |
def ResNet50UNet(num_classes=1000): | |
return ResNetUNet(Bottleneck, [3, 4, 6, 3], num_classes) | |
def ResNet101UNet(num_classes=1000): | |
return ResNetUNet(Bottleneck, [3, 4, 23, 3], num_classes) | |
def ResNet152UNet(num_classes=1000): | |
return ResNetUNet(Bottleneck, [3, 8, 36, 3], num_classes) | |