Spaces:
Runtime error
Runtime error
File size: 9,182 Bytes
e853854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
#https://huggingface.co/spaces/Galis/room_interior_quality/tree/main
STABILITY_HOST = os.environ["STABILITY_HOST"]
STABILITY_KEY = os.environ["STABILITY_KEY"]
cohere_key = os.environ["cohere_key"]
import cohere
import random
co = cohere.Client(cohere_key)
import io
import os
import warnings
import math
from math import sqrt
from IPython.display import display
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from PIL import Image
stability_api = client.StabilityInference(
key=os.environ['STABILITY_KEY'],
verbose=True,
)
def generate_caption_keywords(prompt, model='command-xlarge-20221108', max_tokens=200, temperature=random.uniform(0.1, 2), k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=[]):
response = co.generate(
model=model,
prompt=prompt,
max_tokens=max_tokens,
temperature=temperature,
k=k,
p=p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop_sequences=stop_sequences,
return_likelihoods='NONE')
def highlight_keywords(text):
keywords = []
text = text.lower()
text = re.sub(r'[^a-z\s]', '', text) # remove punctuation
text = re.sub(r'\b(the|and|of)\b', '', text) # remove stop words
words = text.split()
for word in words:
if word not in keywords:
keywords.append(word)
return keywords
caption = response.generations[0].text
keywords = highlight_keywords(caption)
keywords_string = ', '.join(keywords)
return caption, keywords_string
def img2img( path ,design,x_prompt,alt_prompt,strength,guidance_scale,steps):
#####
# img = Image.open(path)
# width, height = img.size
# # Set the maximum width and height to 1024 pixels
# max_width = 1024
# max_height = 1024
# # Calculate the new size of the image, making sure that the width and height are within the allowed range
# new_width = min(width, max_width)
# new_height = min(height, max_height)
# # Calculate the new size of the image, making sure that the width and height are multiples of 64
# new_width = ((new_width + 63) // 64) * 64
# new_height = ((new_height + 63) // 64) * 64
# # Resize the image
# img = img.resize((new_width, new_height), resample=Image.Resampling.BILINEAR)
#####
# max_pixels = 1048576
img = Image.open(path)
width, height = img.size
num_pixels = width * height
# Calculate the maximum number of pixels allowed
max_pixels = 1048576
# Calculate the new size of the image, making sure that the number of pixels does not exceed the maximum limit
if width * height > max_pixels:
# Calculate the new width and height of the image
ratio = width / height
new_width = int(math.sqrt(max_pixels * ratio))
new_height = int(math.sqrt(max_pixels / ratio))
else:
new_width = width
new_height = height
# Make sure that either the width or the height of the resized image is a multiple of 64
if new_width % 64 != 0:
new_width = ((new_width + 63) // 64) * 64
if new_height % 64 != 0:
new_height = ((new_height + 63) // 64) * 64
# Resize the image
img = img.resize((new_width, new_height), resample=Image.BILINEAR)
# Check if the number of pixels in the resized image is within the maximum limit
# If not, adjust the width and height of the image to bring the number of pixels within the maximum limit
if new_width * new_height > max_pixels:
while new_width * new_height > max_pixels:
new_width -= 1
new_height = int(max_pixels / new_width)
# Calculate the closest multiple of 64 for each value
if new_width % 64 != 0:
new_width = (new_width // 64) * 64
if new_height % 64 != 0:
new_height = (new_height // 64) * 64
# Make sure that the final values are less than the original values
if new_width > 1407:
new_width -= 64
if new_height > 745:
new_height -= 64
new_height ,new_width
# Initialize the values
widthz = new_width
heightz = new_height
# Calculate the closest multiple of 64 for each value
if widthz % 64 != 0:
widthz = (widthz // 64) * 64
if heightz % 64 != 0:
heightz = (heightz // 64) * 64
# Make sure that the final values are less than the original values
if widthz > 1407:
widthz -= 64
if heightz > 745:
heightz -= 64
img = img.resize((widthz, heightz), resample=Image.BILINEAR)
########
max_attempts = 5 # maximum number of attempts before giving up
attempts = 0 # current number of attempts
while attempts < max_attempts:
try:
if x_prompt == True:
prompt = alt_prompt
else:
try:
caption, keywords = generate_caption_keywords(design)
prompt = keywords
except:
prompt = design
# call the GRPC service to generate the image
answers = stability_api.generate(
prompt,
init_image=img,
seed=54321,
start_schedule=strength,
)
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img2 = Image.open(io.BytesIO(artifact.binary))
img2 = img2.resize((new_width, new_height), resample=Image.Resampling.BILINEAR)
img2.save("new_image.jpg")
print(type(img2))
# if the function reaches this point, it means it succeeded, so we can return the result
return img2
except Exception as e:
# if an exception is thrown, we will increment the attempts counter and try again
attempts += 1
print("Attempt {} failed: {}".format(attempts, e))
# if the function reaches this point, it means the maximum number of attempts has been reached, so we will raise an exception
raise Exception("Maximum number of attempts reached, unable to generate image")
import gradio as gr
gr.Interface(img2img, [gr.Image(source="upload", type="filepath", label="Input Image"),
gr.Dropdown(['interior design of living room',
'interior design of gaming room',
'interior design of kitchen',
'interior design of bedroom',
'interior design of bathroom',
'interior design of office',
'interior design of meeting room',
'interior design of personal room'],label="Click here to select your design by Cohere command Langauge model",value = 'interior design'),
gr.Checkbox(label="Check Custom design if you already have prompt",value = False),
gr.Textbox(label = ' Input custom Prompt Text'),
gr.Slider(label='Strength , try with multiple value betweens 0.55 to 0.9 ', minimum = 0, maximum = 1, step = .01, value = .65),
gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
gr.Slider(10, 50, value = 50, step = 1, label = 'Number of Iterations')
],
gr.Image(),
examples =[['1.png','interior design of living room','False','interior design',0.6,7,50],
['2.png','interior design of hall ','False','interior design',0.7,7,50],
['3.png','interior design of bedroom','False','interior design',0.6,7,50]],title = "" +'**Baith-al-suroor بَیتُ الْسرور 🏡🤖**, Transform your space with the power of artificial intelligence. '+ "",
description="Baith al suroor بَیتُ الْسرور (house of happiness in Arabic) 🏡🤖 is a simple app that uses the power of artificial intelligence to transform your space. With the Cohere language Command model, it can generate descriptions of your desired design, and the Stable Diffusion algorithm creates relevant images to bring your vision to your thoughts. Give Baith AI a try and see how it can elevate your interior design.--if you want to scale / reaserch / build mobile app on this space konnect me @[here](https://www.linkedin.com/in/sallu-mandya/)").launch( debug = True)
|