import torch
import os
import gradio as gr
import pytube as pt
from speechbox import ASRDiarizationPipeline
from huggingface_hub import login
MODEL_NAME = "openai/whisper-small"
device = 0 if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN")
pipe = ASRDiarizationPipeline.from_pretrained(
asr_model=MODEL_NAME,
device=device,
use_auth_token=HF_TOKEN,
)
def tuple_to_string(start_end_tuple, ndigits=1):
return str((round(start_end_tuple[0], ndigits), round(start_end_tuple[1], ndigits)))
def format_as_transcription(raw_segments, with_timestamps=False):
if with_timestamps:
return "\n\n".join([chunk["speaker"] + " " + tuple_to_string(chunk["timestamp"]) + chunk["text"] for chunk in raw_segments])
else:
return "\n\n".join([chunk["speaker"] + chunk["text"] for chunk in raw_segments])
def transcribe(file_upload, with_timestamps):
if file_upload is None:
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.")
raw_segments = pipe(file_upload)
transcription = format_as_transcription(raw_segments, with_timestamps=with_timestamps)
return transcription
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
" "
)
return HTML_str
def yt_transcribe(yt_url, with_timestamps):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")
return html_embed_str, format_as_transcription(text, with_timestamps=with_timestamps)
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", type="filepath"),
gr.Checkbox(label="With timestamps?", value=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Speaker Diarization: Transcribe Audio",
description=(
"Transcribe audio files with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). "
"Demo uses the pre-trained checkpoint [Whisper Small](https://huggingface.co/openai/whisper-small) for the ASR "
"transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers."
"\n\n"
"Check out the repo here: https://github.com/huggingface/speechbox/"
),
#examples=[
# ["./processed.wav", True],
# ["./processed.wav", False],
#],
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Checkbox(label="With timestamps?", value=True),
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Speaker Diarization: Transcribe YouTube",
description=(
"Transcribe YouTube videos with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). "
"Demo uses the pre-trained checkpoint [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) for the ASR "
"transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers."
"\n\n"
"Check out the repo here: https://github.com/huggingface/speechbox/"
),
examples=[
["https://www.youtube.com/watch?v=9dAWIPixYxc", True],
["https://www.youtube.com/watch?v=9dAWIPixYxc", False],
],
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)