Spaces:
Runtime error
Runtime error
File size: 16,816 Bytes
ecc769b e03497c ecc769b e03497c ecc769b a18760d 526c3e1 9454e59 a18760d 087ab59 a18760d e03497c a18760d e03497c a18760d 5192ddb ecc769b 526c3e1 087ab59 526c3e1 d1efa41 526c3e1 59075ed 9454e59 bbd86c5 d1efa41 526c3e1 59075ed 9454e59 59075ed 526c3e1 ecc769b 3bef49f ecc769b 5192ddb ecc769b 3bef49f ecc769b 5192ddb 3bef49f ecc769b 3bef49f ecc769b 526c3e1 3bef49f ecc769b 526c3e1 3bef49f 526c3e1 23492e1 3bef49f bbd86c5 9454e59 bbd86c5 9454e59 23492e1 ecc769b 526c3e1 ecc769b 77a7388 526c3e1 3bef49f 23492e1 ecc769b a18760d 23492e1 a18760d ecc769b cac9168 ecc769b 3bef49f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import streamlit as st
import math
import numpy as np
import nibabel as nib
import torch
import torch.nn.functional as F
from transformers import AutoModel
import os
import tempfile
from pathlib import Path
from skimage.filters import threshold_otsu
import torchio as tio
# import psutil
def infer_full_vol(tensor, model):
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W] - adding batch and channel dims
tensor = torch.movedim(tensor, -1, -3)
tensor = tensor / tensor.max()
sizes = tensor.shape[-3:]
new_sizes = [math.ceil(s / 16) * 16 for s in sizes]
total_pads = [new_size - s for s, new_size in zip(sizes, new_sizes)]
pad_before = [pad // 2 for pad in total_pads]
pad_after = [pad - pad_before[i] for i, pad in enumerate(total_pads)]
padding = []
for i in reversed(range(len(pad_before))):
padding.extend([pad_before[i], pad_after[i]])
tensor = F.pad(tensor, padding)
with torch.no_grad():
output = model(tensor)
if type(output) is tuple or type(output) is list:
output = output[0]
output = torch.sigmoid(output)
slices = [slice(None)] * output.dim()
for i in range(len(pad_before)):
dim = -3 + i
start = pad_before[i]
size = sizes[i]
end = start + size
slices[dim] = slice(start, end)
output = output[tuple(slices)]
output = torch.movedim(output, -3, -1).type(tensor.type())
return output.squeeze().detach().cpu().numpy()
def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_width=32, stride_depth=16, batch_size=10, num_worker=2):
test_subject = tio.Subject(img = tio.ScalarImage(tensor=tensor.unsqueeze(0))) # adding channel dim while creating the TorchIO subject
overlap = np.subtract(patch_size, (stride_length, stride_width, stride_depth))
def normaliser(batch):
for i in range(batch.shape[0]):
batch[i] = batch[i] / batch[i].max()
return batch
with torch.no_grad():
grid_sampler = tio.inference.GridSampler(
test_subject,
patch_size,
overlap,
)
aggregator = tio.inference.GridAggregator(grid_sampler, overlap_mode="average")
patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=batch_size, shuffle=False, num_workers=num_worker)
total_batches = len(patch_loader)
progress_bar = st.progress(0)
for i, patches_batch in enumerate(patch_loader):
st.text(f"Processing batch {i + 1} of {total_batches}...")
local_batch = normaliser(patches_batch['img'][tio.DATA].float())
locations = patches_batch[tio.LOCATION]
local_batch = torch.movedim(local_batch, -1, -3)
output = model(local_batch)
if type(output) is tuple or type(output) is list:
output = output[0]
output = torch.sigmoid(output).detach().cpu()
output = torch.movedim(output, -3, -1).type(local_batch.type())
aggregator.add_batch(output, locations)
progress_bar.progress((i + 1) / total_batches)
# st.text(f"CPU usage: {psutil.cpu_percent()}% | RAM usage: {psutil.virtual_memory().percent}%")
predicted = aggregator.get_output_tensor().squeeze().numpy()
return predicted
# Set page configuration
st.set_page_config(
page_title="DS6 | Segmenting vessels in 3D MRA-ToF (ideally, 7T)",
page_icon="🧠",
layout="wide",
initial_sidebar_state="expanded",
)
# Sidebar content
with st.sidebar:
st.title("Segmenting vessels in the brain from a 3D Magnetic Resonance Angiograph | DS6")
st.markdown("""
This application allows you to upload a 3D NIfTI file (dims: H x W x D, where the final dim is the slice dim in the axial plane), process it through a pre-trained 3D model (from DS6 and other related works), and download the output as a `.nii.gz` file containing the vessel segmentation.
**Instructions**:
- Upload your 3D NIfTI file (`.nii` or `.nii.gz`). The model was trained on `7T MRA-ToF` data, but it should work on other field strengths as well.
- Select a pretrained model from the dropdown menu.
- Select the inference mode (full volume or patch-based) from the dropdown menu.
- Click the "Process" button to generate the latent factors.
""")
st.markdown("---")
st.markdown("© 2024 Soumick Chatterjee")
# Main content
st.header("DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data")
st.markdown("""
This application can be used to perform vessel segmentation by uploading a `Magnetic Resonance Angiograph (MRA-ToF)`, ideally acquired at 7T, but it should also work on other field strengths, in NIFTI format (.nii or .nii.gz).
The list of weights includes those from the original [DS6 paper](https://doi.org/10.3390/jimaging8100259), from the [SMILE-UHURA challenge](https://doi.org/10.7303/syn47164761), from a follow-up research [SPOCKMIP](https://arxiv.org/abs/2407.08655), as well as a [fine-tuned version](https://www.medrxiv.org/content/10.1101/2024.10.03.24314845v1) of the DS6 model (trained on the SMILE-UHURA dataset) using the Cambridge 7T Cerebral Small Vessel Disease (CamSVD) dataset, which contains data from subjects with lacunar strokes with SVD, non-lacunar strokes without SVD, and healthy controls.
Segmentation can be performed in 2 different inference modes: full volume inference and patch-based inference. All these research works used patch-based inference. However, if the volume is not large enough, and only large vessels are to be segmented, full volume inference may be performed, which is significantly faster. Nevertheless, full volume inference might result in an out-of-memory error (if the volume is very large) and may not segment the small vessels properly.
""")
with st.expander("List of available pretrained models"):
st.markdown(
"""
| Model Name | Description |
|------------|-------------|
| `DS6_UNet3D_woDeform` | UNet 3D, trained without deformation-aware learning |
| `DS6_UNetMSS3D_woDeform` | UNet MSS 3D, trained without deformation-aware learning |
| `DS6_UNetMSS3D_wDeform` | UNet MSS 3D, trained with deformation-aware learning [Proposed method, DS6] |
| `SMILEUHURA_DS6_UNet3D_woDeform` | UNet 3D, trained without deformation-aware learning on the SMILE-UHURA dataset |
| `SMILEUHURA_DS6_UNetMSS3D_woDeform` | UNet MSS 3D, trained without deformation-aware learning on the SMILE-UHURA dataset |
| `SMILEUHURA_DS6_UNetMSS3D_wDeform` | UNet MSS 3D, trained with deformation-aware learning on the SMILE-UHURA dataset |
| `SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_MIP` | UNet MSS 3D, trained with MIP (Maximum Intensity Projection) loss [Proposed method, SPOCKMIP] |
| `SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_mMIP` | UNet MSS 3D, trained with Multi-axis MIP loss [Proposed method, SPOCKMIP] |
| `SMILEUHURA_SPOCKMIP_UNet3D_MIP` | UNet 3D, trained with MIP (Maximum Intensity Projection) loss [Proposed method, SPOCKMIP] |
| `SMILEUHURA_SPOCKMIP_UNet3D_mMIP` | UNet 3D, trained with Multi-axis MIP loss [Proposed method, SPOCKMIP] |
| `SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_DS6MIP` | UNet MSS 3D, trained with deformation-aware learning, and then with MIP loss |
| `SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform` | UNet MSS 3D, initially trained with deformation-aware learning on the SMILE-UHURA dataset, and then fine-tuned on the CamSVD dataset with deformation-aware learning |
"""
)
st.markdown("---")
# File uploader
uploaded_file = st.file_uploader(
"Please upload a 3D NIfTI file (.nii or .nii.gz)",
type=["nii", "nii.gz"]
)
# Model selection
model_options = [
"DS6_UNet3D_woDeform",
"DS6_UNetMSS3D_woDeform",
"DS6_UNetMSS3D_wDeform",
"SMILEUHURA_DS6_UNet3D_woDeform",
"SMILEUHURA_DS6_UNetMSS3D_woDeform",
"SMILEUHURA_DS6_UNetMSS3D_wDeform",
"SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_MIP",
"SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_mMIP",
"SMILEUHURA_SPOCKMIP_UNet3D_MIP",
"SMILEUHURA_SPOCKMIP_UNet3D_mMIP",
"SMILEUHURA_neuRoSliCCe_SPOCKMIP_UNetMSS3D_DS6MIP",
"SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform"
]
selected_model = st.selectbox("Select a pretrained model:", model_options)
# Mode selection
mode_options = ["Full volume inference", "Patch-based inference [Default for all the published works]"]
selected_mode = st.selectbox("Select the inference mode:", mode_options)
# Parameters for patch-based inference
if selected_mode == "Patch-based inference [Default for all the published works]":
col1, col2, col3 = st.columns(3)
with col1:
patch_size = st.number_input("Patch size:", min_value=1, value=64)
stride_length = st.number_input("Stride length:", min_value=1, value=32)
with col2:
batch_size = st.number_input("Batch size:", min_value=1, value=14)
stride_width = st.number_input("Stride width:", min_value=1, value=32)
with col3:
num_worker = st.number_input("Number of workers:", min_value=1, value=3)
stride_depth = st.number_input("Stride depth:", min_value=1, value=16)
# Process button
process_button = st.button("Process")
if uploaded_file is not None and process_button:
try:
# Save the uploaded file to a temporary file
file_extension = ''.join(Path(uploaded_file.name).suffixes)
with tempfile.NamedTemporaryFile(suffix=file_extension) as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_file.flush()
# Load the NIfTI file from the temporary file
nifti_img = nib.load(tmp_file.name)
data = nifti_img.get_fdata()
# Convert to PyTorch tensor
tensor = torch.from_numpy(data).float()
# Ensure it's 3D
if tensor.ndim != 3:
st.error("The uploaded NIfTI file is not a 3D volume. Please upload a valid 3D NIfTI file.")
else:
# Display input details
st.success("File successfully uploaded and read.")
st.write(f"Input tensor shape: `{tensor.shape}`")
st.write(f"Selected pretrained model: `{selected_model}`")
# Construct the model name based on the selected model
model_name = f"soumickmj/{selected_model}"
# Load the pre-trained model from Hugging Face
@st.cache_resource
def load_model(model_name):
hf_token = os.environ.get('HF_API_TOKEN')
if hf_token is None:
st.error("Hugging Face API token is not set. Please set the 'HF_API_TOKEN' environment variable.")
return None
try:
model = AutoModel.from_pretrained(
model_name,
trust_remote_code=True,
use_auth_token=hf_token
)
model.eval()
return model
except Exception as e:
st.error(f"Failed to load model: {e}")
return None
with st.spinner('Loading the pre-trained model...'):
model = load_model(model_name)
if model is None:
st.stop() # Stop the app if the model couldn't be loaded
# Move model and tensor to CPU (ensure compatibility with Spaces)
device = torch.device('cpu')
model = model.to(device)
tensor = tensor.to(device)
# Process the tensor through the model
with st.spinner('Processing the tensor through the model...'):
if selected_mode == "Full volume inference":
st.info("Running full volume inference...")
output = infer_full_vol(tensor, model)
else:
st.info("Running patch-based inference [Default for all the published works]...")
output = infer_patch_based(tensor, model, patch_size=patch_size, stride_length=stride_length, stride_width=stride_width, stride_depth=stride_depth, batch_size=batch_size, num_worker=num_worker)
st.success("Processing complete.")
st.write(f"Output tensor shape: `{output.shape}`")
try:
thresh = threshold_otsu(output)
output = output > thresh
except Exception as error:
st.error(f"Otsu thresholding failed: {error}. Defaulting to a threshold of 0.5.")
output = output > 0.5 # exception only if input image seems to have just one color 1.0.
output = output.astype('uint16')
# Save the output as a NIfTI file
output_img = nib.Nifti1Image(output, affine=nifti_img.affine)
output_path = tempfile.NamedTemporaryFile(suffix='.nii.gz', delete=False).name
nib.save(output_img, output_path)
# Read the saved file for download
with open(output_path, "rb") as f:
output_data = f.read()
# Download button for NIfTI file
st.download_button(
label="Download Segmentation Output",
data=output_data,
file_name='segmentation_output.nii.gz',
mime='application/gzip'
)
except Exception as e:
st.error(f"An error occurred: {e}")
elif uploaded_file is None:
st.info("Awaiting file upload...")
elif not process_button:
st.info("Click the 'Process' button to start processing.")
# Footer
st.markdown(
"""
---
## Credits
If you like this application, please click on **"Like"** on the top left!
If you use this application and/or any of these models, please cite the following paper:
```
@Article{chatterjee2022ds6,
AUTHOR = {Chatterjee, Soumick and Prabhu, Kartik and Pattadkal, Mahantesh and Bortsova, Gerda and Sarasaen, Chompunuch and Dubost, Florian and Mattern, Hendrik and de Bruijne, Marleen and Speck, Oliver and Nürnberger, Andreas},
TITLE = {DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data},
JOURNAL = {Journal of Imaging},
VOLUME = {8},
YEAR = {2022},
NUMBER = {10},
ARTICLE-NUMBER = {259},
URL = {https://www.mdpi.com/2313-433X/8/10/259},
ISSN = {2313-433X},
DOI = {10.3390/jimaging8100259}
}
```
If you use one of the models with the name starting with `SMILEUHURA`, please addiitonally cite the following paper:
```
@article{chatterjee2023smile,
title={SMILE-UHURA Challenge},
author={Chatterjee, S and Mattern, H and Dubost, F and Schreiber, S and Nürnberger, A and Speck, O},
year={2023},
doi = {10.7303/syn47164761},
URL = {https://doi.org/10.7303/syn47164761}
}
```
If you use one of the models that contains `SPOCKMIP` in its name, please addiitonally cite the following paper:
```
@article{radhakrishna2024spockmip,
title={SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss},
author={Radhakrishna, Chethan and Chintalapati, Karthikesh Varma and Kumar, Sri Chandana Hudukula Ram and Sutrave, Raviteja and Mattern, Hendrik and Speck, Oliver and N{\"u}rnberger, Andreas and Chatterjee, Soumick},
journal={arXiv preprint arXiv:2407.08655},
year={2024}
}
```
If you use the `SMILEUHURA_DS6_CamSVD_UNetMSS3D_wDeform` model (i.e. fine-tuned on the CamSVD dataset), please addiitonally cite the following paper:
```
@article{ruiDS62024,
author = {Li, Rui and Chatterjee, Soumick and Jiaerken, Yeerfan and Radhakrishna, Chethan and Benjamin, Philip and Nannoni, Stefania and Tozer, Daniel J. and Markus, Hugh and Rodgers, Christopher T.},
title = {A Deep Learning Pipeline for Analysis of the 3D Morphology of the Cerebral Small Perforating Arteries from Time-of-Flight 7 Tesla MRI},
year = {2024},
doi = {10.1101/2024.10.03.24314845},
publisher = {Cold Spring Harbor Laboratory Press},
URL = {https://www.medrxiv.org/content/early/2024/10/04/2024.10.03.24314845},
journal = {medRxiv}
}
```
"""
) |