from typing import Dict, List import tiktoken from autogpt.logger import logger def count_message_tokens( messages: List[Dict[str, str]], model: str = "gpt-3.5-turbo-0301" ) -> int: """ Returns the number of tokens used by a list of messages. Args: messages (list): A list of messages, each of which is a dictionary containing the role and content of the message. model (str): The name of the model to use for tokenization. Defaults to "gpt-3.5-turbo-0301". Returns: int: The number of tokens used by the list of messages. """ try: encoding = tiktoken.encoding_for_model(model) except KeyError: logger.warn("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": # !Node: gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301.") return count_message_tokens(messages, model="gpt-3.5-turbo-0301") elif model == "gpt-4": # !Note: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.") return count_message_tokens(messages, model="gpt-4-0314") elif model == "gpt-3.5-turbo-0301": tokens_per_message = ( 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n ) tokens_per_name = -1 # if there's a name, the role is omitted elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"num_tokens_from_messages() is not implemented for model {model}.\n" " See https://github.com/openai/openai-python/blob/main/chatml.md for" " information on how messages are converted to tokens." ) num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def count_string_tokens(string: str, model_name: str) -> int: """ Returns the number of tokens in a text string. Args: string (str): The text string. model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo") Returns: int: The number of tokens in the text string. """ encoding = tiktoken.encoding_for_model(model_name) return len(encoding.encode(string))