File size: 23,010 Bytes
24eb05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""

import os

import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.io import loadmat
from torch.nn.modules import BatchNorm2d

from . import resnet
from . import mobilenet


NUM_CLASS = 150
base_path = os.path.dirname(os.path.abspath(__file__))  # current file path
colors_path = os.path.join(base_path, 'color150.mat')
classes_path = os.path.join(base_path, 'object150_info.csv')

segm_options = dict(colors=loadmat(colors_path)['colors'],
                    classes=pd.read_csv(classes_path),)


class NormalizeTensor:
    def __init__(self, mean, std, inplace=False):
        """Normalize a tensor image with mean and standard deviation.
        .. note::
            This transform acts out of place by default, i.e., it does not mutates the input tensor.
        See :class:`~torchvision.transforms.Normalize` for more details.
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
            mean (sequence): Sequence of means for each channel.
            std (sequence): Sequence of standard deviations for each channel.
            inplace(bool,optional): Bool to make this operation inplace.
        Returns:
            Tensor: Normalized Tensor image.
        """

        self.mean = mean
        self.std = std
        self.inplace = inplace

    def __call__(self, tensor):
        if not self.inplace:
            tensor = tensor.clone()

        dtype = tensor.dtype
        mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device)
        std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device)
        tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
        return tensor


# Model Builder
class ModelBuilder:
    # custom weights initialization
    @staticmethod
    def weights_init(m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            nn.init.kaiming_normal_(m.weight.data)
        elif classname.find('BatchNorm') != -1:
            m.weight.data.fill_(1.)
            m.bias.data.fill_(1e-4)

    @staticmethod
    def build_encoder(arch='resnet50dilated', fc_dim=512, weights=''):
        pretrained = True if len(weights) == 0 else False
        arch = arch.lower()
        if arch == 'mobilenetv2dilated':
            orig_mobilenet = mobilenet.__dict__['mobilenetv2'](pretrained=pretrained)
            net_encoder = MobileNetV2Dilated(orig_mobilenet, dilate_scale=8)
        elif arch == 'resnet18':
            orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnet)
        elif arch == 'resnet18dilated':
            orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
            net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
        elif arch == 'resnet50dilated':
            orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
            net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
        elif arch == 'resnet50':
            orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnet)
        else:
            raise Exception('Architecture undefined!')

        # encoders are usually pretrained
        # net_encoder.apply(ModelBuilder.weights_init)
        if len(weights) > 0:
            print('Loading weights for net_encoder')
            net_encoder.load_state_dict(
                torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
        return net_encoder

    @staticmethod
    def build_decoder(arch='ppm_deepsup',
                      fc_dim=512, num_class=NUM_CLASS,
                      weights='', use_softmax=False, drop_last_conv=False):
        arch = arch.lower()
        if arch == 'ppm_deepsup':
            net_decoder = PPMDeepsup(
                num_class=num_class,
                fc_dim=fc_dim,
                use_softmax=use_softmax,
                drop_last_conv=drop_last_conv)
        elif arch == 'c1_deepsup':
            net_decoder = C1DeepSup(
                num_class=num_class,
                fc_dim=fc_dim,
                use_softmax=use_softmax,
                drop_last_conv=drop_last_conv)
        else:
            raise Exception('Architecture undefined!')

        net_decoder.apply(ModelBuilder.weights_init)
        if len(weights) > 0:
            print('Loading weights for net_decoder')
            net_decoder.load_state_dict(
                torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
        return net_decoder

    @staticmethod
    def get_decoder(weights_path, arch_encoder, arch_decoder, fc_dim, drop_last_conv, *arts, **kwargs):
        path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/decoder_epoch_20.pth')
        return ModelBuilder.build_decoder(arch=arch_decoder, fc_dim=fc_dim, weights=path, use_softmax=True, drop_last_conv=drop_last_conv)

    @staticmethod
    def get_encoder(weights_path, arch_encoder, arch_decoder, fc_dim, segmentation,
                    *arts, **kwargs):
        if segmentation:
            path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/encoder_epoch_20.pth')
        else:
            path = ''
        return ModelBuilder.build_encoder(arch=arch_encoder, fc_dim=fc_dim, weights=path)


def conv3x3_bn_relu(in_planes, out_planes, stride=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False),
        BatchNorm2d(out_planes),
        nn.ReLU(inplace=True),
    )


class SegmentationModule(nn.Module):
    def __init__(self,
                 weights_path,
                 num_classes=150,
                 arch_encoder="resnet50dilated",
                 drop_last_conv=False,
                 net_enc=None,  # None for Default encoder
                 net_dec=None,  # None for Default decoder
                 encode=None,  # {None, 'binary', 'color', 'sky'}
                 use_default_normalization=False,
                 return_feature_maps=False,
                 return_feature_maps_level=3,  # {0, 1, 2, 3}
                 return_feature_maps_only=True,
                 **kwargs,
                 ):
        super().__init__()
        self.weights_path = weights_path
        self.drop_last_conv = drop_last_conv
        self.arch_encoder = arch_encoder
        if self.arch_encoder == "resnet50dilated":
            self.arch_decoder = "ppm_deepsup"
            self.fc_dim = 2048
        elif self.arch_encoder == "mobilenetv2dilated":
            self.arch_decoder = "c1_deepsup"
            self.fc_dim = 320
        else:
            raise NotImplementedError(f"No such arch_encoder={self.arch_encoder}")
        model_builder_kwargs = dict(arch_encoder=self.arch_encoder,
                                    arch_decoder=self.arch_decoder,
                                    fc_dim=self.fc_dim,
                                    drop_last_conv=drop_last_conv,
                                    weights_path=self.weights_path)

        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.encoder = ModelBuilder.get_encoder(**model_builder_kwargs) if net_enc is None else net_enc
        self.decoder = ModelBuilder.get_decoder(**model_builder_kwargs) if net_dec is None else net_dec
        self.use_default_normalization = use_default_normalization
        self.default_normalization = NormalizeTensor(mean=[0.485, 0.456, 0.406],
                                                     std=[0.229, 0.224, 0.225])

        self.encode = encode

        self.return_feature_maps = return_feature_maps

        assert 0 <= return_feature_maps_level <= 3
        self.return_feature_maps_level = return_feature_maps_level

    def normalize_input(self, tensor):
        if tensor.min() < 0 or tensor.max() > 1:
            raise ValueError("Tensor should be 0..1 before using normalize_input")
        return self.default_normalization(tensor)

    @property
    def feature_maps_channels(self):
        return 256 * 2**(self.return_feature_maps_level)  # 256, 512, 1024, 2048

    def forward(self, img_data, segSize=None):
        if segSize is None:
            raise NotImplementedError("Please pass segSize param. By default: (300, 300)")

        fmaps = self.encoder(img_data, return_feature_maps=True)
        pred = self.decoder(fmaps, segSize=segSize)

        if self.return_feature_maps:
            return pred, fmaps
        # print("BINARY", img_data.shape, pred.shape)
        return pred

    def multi_mask_from_multiclass(self, pred, classes):
        def isin(ar1, ar2):
            return (ar1[..., None] == ar2).any(-1).float()
        return isin(pred, torch.LongTensor(classes).to(self.device))

    @staticmethod
    def multi_mask_from_multiclass_probs(scores, classes):
        res = None
        for c in classes:
            if res is None:
                res = scores[:, c]
            else:
                res += scores[:, c]
        return res

    def predict(self, tensor, imgSizes=(-1,),  # (300, 375, 450, 525, 600)
                segSize=None):
        """Entry-point for segmentation. Use this methods instead of forward
        Arguments:
            tensor {torch.Tensor} -- BCHW
        Keyword Arguments:
            imgSizes {tuple or list} -- imgSizes for segmentation input.
                default: (300, 450)
                original implementation: (300, 375, 450, 525, 600)

        """
        if segSize is None:
            segSize = tensor.shape[-2:]
        segSize = (tensor.shape[2], tensor.shape[3])
        with torch.no_grad():
            if self.use_default_normalization:
                tensor = self.normalize_input(tensor)
            scores = torch.zeros(1, NUM_CLASS, segSize[0], segSize[1]).to(self.device)
            features = torch.zeros(1, self.feature_maps_channels, segSize[0], segSize[1]).to(self.device)

            result = []
            for img_size in imgSizes:
                if img_size != -1:
                    img_data = F.interpolate(tensor.clone(), size=img_size)
                else:
                    img_data = tensor.clone()

                if self.return_feature_maps:
                    pred_current, fmaps = self.forward(img_data, segSize=segSize)
                else:
                    pred_current = self.forward(img_data, segSize=segSize)


                result.append(pred_current)
                scores = scores + pred_current / len(imgSizes)

                # Disclaimer: We use and aggregate only last fmaps: fmaps[3]
                if self.return_feature_maps:
                    features = features + F.interpolate(fmaps[self.return_feature_maps_level], size=segSize) / len(imgSizes)

            _, pred = torch.max(scores, dim=1)

            if self.return_feature_maps:
                return features

            return pred, result

    def get_edges(self, t):
        edge = torch.cuda.ByteTensor(t.size()).zero_()
        edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1])
        edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1])
        edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
        edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])

        if True:
            return edge.half()
        return edge.float()


# pyramid pooling, deep supervision
class PPMDeepsup(nn.Module):
    def __init__(self, num_class=NUM_CLASS, fc_dim=4096,
                 use_softmax=False, pool_scales=(1, 2, 3, 6),
                 drop_last_conv=False):
        super().__init__()
        self.use_softmax = use_softmax
        self.drop_last_conv = drop_last_conv

        self.ppm = []
        for scale in pool_scales:
            self.ppm.append(nn.Sequential(
                nn.AdaptiveAvgPool2d(scale),
                nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                BatchNorm2d(512),
                nn.ReLU(inplace=True)
            ))
        self.ppm = nn.ModuleList(self.ppm)
        self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)

        self.conv_last = nn.Sequential(
            nn.Conv2d(fc_dim + len(pool_scales) * 512, 512,
                      kernel_size=3, padding=1, bias=False),
            BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Dropout2d(0.1),
            nn.Conv2d(512, num_class, kernel_size=1)
        )
        self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
        self.dropout_deepsup = nn.Dropout2d(0.1)

    def forward(self, conv_out, segSize=None):
        conv5 = conv_out[-1]

        input_size = conv5.size()
        ppm_out = [conv5]
        for pool_scale in self.ppm:
            ppm_out.append(nn.functional.interpolate(
                pool_scale(conv5),
                (input_size[2], input_size[3]),
                mode='bilinear', align_corners=False))
        ppm_out = torch.cat(ppm_out, 1)

        if self.drop_last_conv:
            return ppm_out
        else:
            x = self.conv_last(ppm_out)

            if self.use_softmax:  # is True during inference
                x = nn.functional.interpolate(
                    x, size=segSize, mode='bilinear', align_corners=False)
                x = nn.functional.softmax(x, dim=1)
                return x

            # deep sup
            conv4 = conv_out[-2]
            _ = self.cbr_deepsup(conv4)
            _ = self.dropout_deepsup(_)
            _ = self.conv_last_deepsup(_)

            x = nn.functional.log_softmax(x, dim=1)
            _ = nn.functional.log_softmax(_, dim=1)

            return (x, _)


class Resnet(nn.Module):
    def __init__(self, orig_resnet):
        super(Resnet, self).__init__()

        # take pretrained resnet, except AvgPool and FC
        self.conv1 = orig_resnet.conv1
        self.bn1 = orig_resnet.bn1
        self.relu1 = orig_resnet.relu1
        self.conv2 = orig_resnet.conv2
        self.bn2 = orig_resnet.bn2
        self.relu2 = orig_resnet.relu2
        self.conv3 = orig_resnet.conv3
        self.bn3 = orig_resnet.bn3
        self.relu3 = orig_resnet.relu3
        self.maxpool = orig_resnet.maxpool
        self.layer1 = orig_resnet.layer1
        self.layer2 = orig_resnet.layer2
        self.layer3 = orig_resnet.layer3
        self.layer4 = orig_resnet.layer4

    def forward(self, x, return_feature_maps=False):
        conv_out = []

        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = self.relu3(self.bn3(self.conv3(x)))
        x = self.maxpool(x)

        x = self.layer1(x); conv_out.append(x);
        x = self.layer2(x); conv_out.append(x);
        x = self.layer3(x); conv_out.append(x);
        x = self.layer4(x); conv_out.append(x);

        if return_feature_maps:
            return conv_out
        return [x]

# Resnet Dilated
class ResnetDilated(nn.Module):
    def __init__(self, orig_resnet, dilate_scale=8):
        super().__init__()
        from functools import partial

        if dilate_scale == 8:
            orig_resnet.layer3.apply(
                partial(self._nostride_dilate, dilate=2))
            orig_resnet.layer4.apply(
                partial(self._nostride_dilate, dilate=4))
        elif dilate_scale == 16:
            orig_resnet.layer4.apply(
                partial(self._nostride_dilate, dilate=2))

        # take pretrained resnet, except AvgPool and FC
        self.conv1 = orig_resnet.conv1
        self.bn1 = orig_resnet.bn1
        self.relu1 = orig_resnet.relu1
        self.conv2 = orig_resnet.conv2
        self.bn2 = orig_resnet.bn2
        self.relu2 = orig_resnet.relu2
        self.conv3 = orig_resnet.conv3
        self.bn3 = orig_resnet.bn3
        self.relu3 = orig_resnet.relu3
        self.maxpool = orig_resnet.maxpool
        self.layer1 = orig_resnet.layer1
        self.layer2 = orig_resnet.layer2
        self.layer3 = orig_resnet.layer3
        self.layer4 = orig_resnet.layer4

    def _nostride_dilate(self, m, dilate):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            # the convolution with stride
            if m.stride == (2, 2):
                m.stride = (1, 1)
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate // 2, dilate // 2)
                    m.padding = (dilate // 2, dilate // 2)
            # other convoluions
            else:
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate, dilate)
                    m.padding = (dilate, dilate)

    def forward(self, x, return_feature_maps=False):
        conv_out = []

        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = self.relu3(self.bn3(self.conv3(x)))
        x = self.maxpool(x)

        x = self.layer1(x)
        conv_out.append(x)
        x = self.layer2(x)
        conv_out.append(x)
        x = self.layer3(x)
        conv_out.append(x)
        x = self.layer4(x)
        conv_out.append(x)

        if return_feature_maps:
            return conv_out
        return [x]

class MobileNetV2Dilated(nn.Module):
    def __init__(self, orig_net, dilate_scale=8):
        super(MobileNetV2Dilated, self).__init__()
        from functools import partial

        # take pretrained mobilenet features
        self.features = orig_net.features[:-1]

        self.total_idx = len(self.features)
        self.down_idx = [2, 4, 7, 14]

        if dilate_scale == 8:
            for i in range(self.down_idx[-2], self.down_idx[-1]):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=4)
                )
        elif dilate_scale == 16:
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )

    def _nostride_dilate(self, m, dilate):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            # the convolution with stride
            if m.stride == (2, 2):
                m.stride = (1, 1)
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate//2, dilate//2)
                    m.padding = (dilate//2, dilate//2)
            # other convoluions
            else:
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate, dilate)
                    m.padding = (dilate, dilate)

    def forward(self, x, return_feature_maps=False):
        if return_feature_maps:
            conv_out = []
            for i in range(self.total_idx):
                x = self.features[i](x)
                if i in self.down_idx:
                    conv_out.append(x)
            conv_out.append(x)
            return conv_out

        else:
            return [self.features(x)]


# last conv, deep supervision
class C1DeepSup(nn.Module):
    def __init__(self, num_class=150, fc_dim=2048, use_softmax=False, drop_last_conv=False):
        super(C1DeepSup, self).__init__()
        self.use_softmax = use_softmax
        self.drop_last_conv = drop_last_conv

        self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
        self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)

        # last conv
        self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
        self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)

    def forward(self, conv_out, segSize=None):
        conv5 = conv_out[-1]

        x = self.cbr(conv5)

        if self.drop_last_conv:
            return x
        else:
            x = self.conv_last(x)

            if self.use_softmax:  # is True during inference
                x = nn.functional.interpolate(
                    x, size=segSize, mode='bilinear', align_corners=False)
                x = nn.functional.softmax(x, dim=1)
                return x

            # deep sup
            conv4 = conv_out[-2]
            _ = self.cbr_deepsup(conv4)
            _ = self.conv_last_deepsup(_)

            x = nn.functional.log_softmax(x, dim=1)
            _ = nn.functional.log_softmax(_, dim=1)

            return (x, _)


# last conv
class C1(nn.Module):
    def __init__(self, num_class=150, fc_dim=2048, use_softmax=False):
        super(C1, self).__init__()
        self.use_softmax = use_softmax

        self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)

        # last conv
        self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)

    def forward(self, conv_out, segSize=None):
        conv5 = conv_out[-1]
        x = self.cbr(conv5)
        x = self.conv_last(x)

        if self.use_softmax: # is True during inference
            x = nn.functional.interpolate(
                x, size=segSize, mode='bilinear', align_corners=False)
            x = nn.functional.softmax(x, dim=1)
        else:
            x = nn.functional.log_softmax(x, dim=1)

        return x


# pyramid pooling
class PPM(nn.Module):
    def __init__(self, num_class=150, fc_dim=4096,
                 use_softmax=False, pool_scales=(1, 2, 3, 6)):
        super(PPM, self).__init__()
        self.use_softmax = use_softmax

        self.ppm = []
        for scale in pool_scales:
            self.ppm.append(nn.Sequential(
                nn.AdaptiveAvgPool2d(scale),
                nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                BatchNorm2d(512),
                nn.ReLU(inplace=True)
            ))
        self.ppm = nn.ModuleList(self.ppm)

        self.conv_last = nn.Sequential(
            nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
                      kernel_size=3, padding=1, bias=False),
            BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Dropout2d(0.1),
            nn.Conv2d(512, num_class, kernel_size=1)
        )

    def forward(self, conv_out, segSize=None):
        conv5 = conv_out[-1]

        input_size = conv5.size()
        ppm_out = [conv5]
        for pool_scale in self.ppm:
            ppm_out.append(nn.functional.interpolate(
                pool_scale(conv5),
                (input_size[2], input_size[3]),
                mode='bilinear', align_corners=False))
        ppm_out = torch.cat(ppm_out, 1)

        x = self.conv_last(ppm_out)

        if self.use_softmax:  # is True during inference
            x = nn.functional.interpolate(
                x, size=segSize, mode='bilinear', align_corners=False)
            x = nn.functional.softmax(x, dim=1)
        else:
            x = nn.functional.log_softmax(x, dim=1)
        return x