import torch import torch.nn as TNN import pandas as pd from tqdm import tqdm from torch.utils.data import Dataset as set, DataLoader as DL from torch import cuda import streamlit as st from transformers import BertTokenizer as BT, BertModel as BM device = 'cuda' if cuda.is_available() else 'cpu' # Defined variables for later use MAX_LEN = 128 TRAIN_BATCH_SIZE = 4 VALID_BATCH_SIZE = 4 LEARNING_RATE = 5e-05 modName = 'bert-base-uncased' # Pre-trained model categories = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] # Labels data = pd.read_csv('./train.csv') data.drop(['id'], inplace=True, axis=1) new = pd.DataFrame() new['text'] = data['comment_text'] new['labels'] = data.iloc[:,1].values.tolist() tokenizer = BT.from_pretrained(modName, truncation=True, do_lower_case=True) class MultiLabelDataset(set): def __init__(self, df, tokenizer, max_len): self.tokenizer = tokenizer self.data = df self.text = df.text self.targets = self.data.labels self.max_len = max_len def __len__(self): return len(self.targets) def __getitem__(self, idx): text = str(self.text[idx]) text = " ".join(text.split()) ins = self.tokenizer.encode_plus( text, None, add_special_tokens=True, max_length=self.max_len, pad_to_max_length=True, return_token_type_ids=True ) input_ids = ins['input_ids'] attention_mask = ins['attention_mask'] token_type_ids = ins["token_type_ids"] #st.write("Input Keys: ", ins.keys()) # was used for debugging return { 'input_ids': torch.tensor(input_ids, dtype=torch.long), 'attention_mask': torch.tensor(attention_mask, dtype=torch.long), 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long), 'targets': torch.tensor(self.targets[idx], dtype=torch.float) } trainSize = 0.8 trainData = new.sample(frac=trainSize,random_state=200) testData = new.drop(trainData.index).reset_index(drop=True) trainData = trainData.reset_index(drop=True) trainSet = MultiLabelDataset(trainData, tokenizer, MAX_LEN) testSet = MultiLabelDataset(testData, tokenizer, MAX_LEN) training_loader = DL(trainSet, batch_size=TRAIN_BATCH_SIZE, shuffle=True) testing_loader = DL(testSet, batch_size=VALID_BATCH_SIZE, shuffle=True) # neural network class BERTClass(TNN.Module): def __init__(self): super(BERTClass, self).__init__() self.l1 = BM.from_pretrained(modName) self.pre_classifier = TNN.Linear(768, 768) self.dropout = TNN.Dropout(0.1) self.classifier = TNN.Linear(768, 6) def forward(self, input_ids, attention_mask, token_type_ids): out = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) hidden_state = out[0] po = hidden_state[:, 0] po = self.pre_classifier(po) po = TNN.Tanh()(po) po = self.dropout(po) outs = self.classifier(po) return outs mod = BERTClass() mod.to(device) # Loss function and Optimizer def lossFN(outs, targets): targets = targets.unsqueeze(1).expand_as(outs) return TNN.BCEWithLogitsLoss()(outs, targets) opt = torch.optim.Adam(mod.parameters(), lr=LEARNING_RATE) # Training and Finetuning def train(mod, training_loader): mod.train() for _, data in tqdm(enumerate(training_loader, 0)): input_ids = data['input_ids'].to(device, dtype=torch.long) attention_mask = data['attention_mask'].to(device, dtype=torch.long) token_type_ids = data['token_type_ids'].to(device, dtype=torch.long) targets = data['targets'].to(device, dtype=torch.float) outs = mod(input_ids, attention_mask, token_type_ids) opt.zero_grad() loss = lossFN(outs, targets) loss.backward() opt.step() # StreamLit Table of Results st.title("Finetuned Model for Toxicity") st.subheader("Model: bert-base-uncased") def predict(tweets): mod.eval() res = [] with torch.no_grad(): for ins in testing_loader: outs = mod(input_ids=ins['input_ids'].to(device), attention_mask=ins['attention_mask'].to(device), token_type_ids=ins['token_type_ids'].to(device)) probs = torch.softmax(outs[0], dim=-1) preds = torch.argmax(probs, dim=-1) for i in range(len(tweets)): res.append({'TWEETS': tweets[i], 'LABEL': id2label[preds[i].item()], 'PROBABILITY': probs[i][preds[i]].item()}) return res res = predict(testing_loader) st.table(res) # table