snaramirez872 commited on
Commit
e55d629
·
1 Parent(s): d31451e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -62,8 +62,7 @@ class MultiLabelDataset(set):
62
  'targets': torch.tensor(self.targets[idx], dtype=torch.float)
63
  }
64
 
65
- # Dataset and DataLoader
66
- trainSize = 0.4
67
  trainData = new.sample(frac=trainSize,random_state=200)
68
  testData = new.drop(trainData.index).reset_index(drop=True)
69
  trainData = trainData.reset_index(drop=True)
@@ -74,17 +73,17 @@ testSet = MultiLabelDataset(testData, tokenizer, MAX_LEN)
74
  training_loader = DL(trainSet, batch_size=TRAIN_BATCH_SIZE, shuffle=True)
75
  testing_loader = DL(testSet, batch_size=VALID_BATCH_SIZE, shuffle=True)
76
 
77
- # model
78
- class DistilBERTClass(TNN.Module):
79
  def __init__(self):
80
- super(DistilBERTClass, self).__init__()
81
  self.l1 = BM.from_pretrained(modName)
82
  self.pre_classifier = TNN.Linear(768, 768)
83
  self.dropout = TNN.Dropout(0.1)
84
  self.classifier = TNN.Linear(768, 6)
85
 
86
  def forward(self, input_ids, attention_mask, token_type_ids):
87
- out = self.l1(input_ids=input_ids, attention_mask=attention_mask)
88
  hidden_state = out[0]
89
  po = hidden_state[:, 0]
90
  po = self.pre_classifier(po)
@@ -93,7 +92,7 @@ class DistilBERTClass(TNN.Module):
93
  outs = self.classifier(po)
94
  return outs
95
 
96
- mod = DistilBERTClass()
97
  mod.to(device)
98
 
99
  # Loss function and Optimizer
 
62
  'targets': torch.tensor(self.targets[idx], dtype=torch.float)
63
  }
64
 
65
+ trainSize = 0.8
 
66
  trainData = new.sample(frac=trainSize,random_state=200)
67
  testData = new.drop(trainData.index).reset_index(drop=True)
68
  trainData = trainData.reset_index(drop=True)
 
73
  training_loader = DL(trainSet, batch_size=TRAIN_BATCH_SIZE, shuffle=True)
74
  testing_loader = DL(testSet, batch_size=VALID_BATCH_SIZE, shuffle=True)
75
 
76
+ # neural network
77
+ class BERTClass(TNN.Module):
78
  def __init__(self):
79
+ super(BERTClass, self).__init__()
80
  self.l1 = BM.from_pretrained(modName)
81
  self.pre_classifier = TNN.Linear(768, 768)
82
  self.dropout = TNN.Dropout(0.1)
83
  self.classifier = TNN.Linear(768, 6)
84
 
85
  def forward(self, input_ids, attention_mask, token_type_ids):
86
+ out = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
87
  hidden_state = out[0]
88
  po = hidden_state[:, 0]
89
  po = self.pre_classifier(po)
 
92
  outs = self.classifier(po)
93
  return outs
94
 
95
+ mod = BERTClass()
96
  mod.to(device)
97
 
98
  # Loss function and Optimizer