# Import libraries import streamlit as st from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier # Load the Iris dataset iris = load_iris() X, y = iris.data, iris.target model = RandomForestClassifier() model.fit(X, y) # Streamlit app interface st.title("Iris Flower Classifier") # User input for flower measurements sepal_length = st.slider('Sepal Length', min_value=1.0, max_value=8.0, step=0.1) sepal_width = st.slider('Sepal Width', min_value=1.0, max_value=4.5, step=0.1) petal_length = st.slider('Petal Length', min_value=1.0, max_value=7.0, step=0.1) petal_width = st.slider('Petal Width', min_value=0.1, max_value=2.5, step=0.1) # Make a prediction using the input values prediction = model.predict([[sepal_length, sepal_width, petal_length, petal_width]]) # Display the prediction st.write(f"The predicted Iris species is: {iris.target_names[prediction][0]}")