Spaces:
Sleeping
Sleeping
# Import libraries | |
import streamlit as st | |
from sklearn.datasets import load_iris | |
from sklearn.ensemble import RandomForestClassifier | |
# Load the Iris dataset | |
iris = load_iris() | |
X, y = iris.data, iris.target | |
model = RandomForestClassifier() | |
model.fit(X, y) | |
# Streamlit app interface | |
st.title("Iris Flower Classifier") | |
# User input for flower measurements | |
sepal_length = st.slider('Sepal Length', min_value=1.0, max_value=8.0, step=0.1) | |
sepal_width = st.slider('Sepal Width', min_value=1.0, max_value=4.5, step=0.1) | |
petal_length = st.slider('Petal Length', min_value=1.0, max_value=7.0, step=0.1) | |
petal_width = st.slider('Petal Width', min_value=0.1, max_value=2.5, step=0.1) | |
# Make a prediction using the input values | |
prediction = model.predict([[sepal_length, sepal_width, petal_length, petal_width]]) | |
# Display the prediction | |
st.write(f"The predicted Iris species is: {iris.target_names[prediction][0]}") |