ardneebwar commited on
Commit
4862fc7
·
1 Parent(s): 710b523

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import pipeline
4
+
5
+ username = "ardneebwar" ## Complete your username
6
+ model_id = f"{username}/distilhubert-finetuned-gtzan"
7
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
+ pipe = pipeline("audio-classification", model=model_id, device=device)
9
+
10
+ # def predict_trunc(filepath):
11
+ # preprocessed = pipe.preprocess(filepath)
12
+ # truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
13
+ # model_outputs = pipe.forward(truncated)
14
+ # outputs = pipe.postprocess(model_outputs)
15
+
16
+ # return outputs
17
+
18
+
19
+ def classify_audio(filepath):
20
+ """
21
+ Goes from
22
+ [{'score': 0.8339303731918335, 'label': 'country'},
23
+ {'score': 0.11914275586605072, 'label': 'rock'},]
24
+ to
25
+ {"country": 0.8339303731918335, "rock":0.11914275586605072}
26
+ """
27
+ preds = pipe(filepath)
28
+ # preds = predict_trunc(filepath)
29
+ outputs = {}
30
+ for p in preds:
31
+ outputs[p["label"]] = p["score"]
32
+ return outputs
33
+
34
+
35
+ title = "🎵 Music Genre Classifier"
36
+ description = """
37
+ demo to showcase the music
38
+ classification model that we just trained on the [GTZAN](https://huggingface.co/datasets/marsyas/gtzan)
39
+ """
40
+
41
+ filenames = ['blues.00098.wav', "disco.00020.wav", "metal.00014.wav", "reggae.00021.wav", "rock.00058.wav"]
42
+ filenames = [[f"./{f}"] for f in filenames]
43
+ demo = gr.Interface(
44
+ fn=classify_audio,
45
+ inputs=gr.Audio(type="filepath"),
46
+ outputs=gr.outputs.Label(),
47
+ title=title,
48
+ description=description,
49
+ examples=filenames,
50
+ )
51
+ demo.launch()