smarttang commited on
Commit
a6dc3df
·
verified ·
1 Parent(s): 345838b

Upload 9 files

Browse files
Files changed (9) hide show
  1. CITATION.cff +44 -0
  2. LICENSE +201 -0
  3. MANIFEST.in +1 -0
  4. Makefile +14 -0
  5. README.md +645 -11
  6. README_zh.md +645 -0
  7. pyproject.toml +33 -0
  8. requirements.txt +21 -0
  9. setup.py +92 -0
CITATION.cff ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ date-released: 2024-03
3
+ message: "If you use this software, please cite it as below."
4
+ authors:
5
+ - family-names: "Zheng"
6
+ given-names: "Yaowei"
7
+ - family-names: "Zhang"
8
+ given-names: "Richong"
9
+ - family-names: "Zhang"
10
+ given-names: "Junhao"
11
+ - family-names: "Ye"
12
+ given-names: "Yanhan"
13
+ - family-names: "Luo"
14
+ given-names: "Zheyan"
15
+ - family-names: "Feng"
16
+ given-names: "Zhangchi"
17
+ - family-names: "Ma"
18
+ given-names: "Yongqiang"
19
+ title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
20
+ url: "https://arxiv.org/abs/2403.13372"
21
+ preferred-citation:
22
+ type: conference-paper
23
+ conference:
24
+ name: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
25
+ authors:
26
+ - family-names: "Zheng"
27
+ given-names: "Yaowei"
28
+ - family-names: "Zhang"
29
+ given-names: "Richong"
30
+ - family-names: "Zhang"
31
+ given-names: "Junhao"
32
+ - family-names: "Ye"
33
+ given-names: "Yanhan"
34
+ - family-names: "Luo"
35
+ given-names: "Zheyan"
36
+ - family-names: "Feng"
37
+ given-names: "Zhangchi"
38
+ - family-names: "Ma"
39
+ given-names: "Yongqiang"
40
+ title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
41
+ url: "https://arxiv.org/abs/2403.13372"
42
+ year: 2024
43
+ publisher: "Association for Computational Linguistics"
44
+ address: "Bangkok, Thailand"
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
MANIFEST.in ADDED
@@ -0,0 +1 @@
 
 
1
+ include LICENSE requirements.txt
Makefile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: quality style test
2
+
3
+ check_dirs := scripts src tests
4
+
5
+ quality:
6
+ ruff check $(check_dirs)
7
+ ruff format --check $(check_dirs)
8
+
9
+ style:
10
+ ruff check $(check_dirs) --fix
11
+ ruff format $(check_dirs)
12
+
13
+ test:
14
+ CUDA_VISIBLE_DEVICES= pytest tests/
README.md CHANGED
@@ -1,11 +1,645 @@
1
- ---
2
- title: Blingsec
3
- emoji: 🏢
4
- colorFrom: indigo
5
- colorTo: green
6
- sdk: docker
7
- pinned: false
8
- license: apache-2.0
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ![# LLaMA Factory](assets/logo.png)
2
+
3
+ [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
4
+ [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
5
+ [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
6
+ [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
7
+ [![Citation](https://img.shields.io/badge/citation-72-green)](#projects-using-llama-factory)
8
+ [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
9
+ [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
10
+ [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
11
+ [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
12
+ [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
13
+ [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
14
+ [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
15
+
16
+ [![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
17
+
18
+ 👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
19
+
20
+ \[ English | [中文](README_zh.md) \]
21
+
22
+ **Fine-tuning a large language model can be easy as...**
23
+
24
+ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89-7ace5698baf6
25
+
26
+ Choose your path:
27
+
28
+ - **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
29
+ - **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
30
+ - **Local machine**: Please refer to [usage](#getting-started)
31
+
32
+ ## Table of Contents
33
+
34
+ - [Features](#features)
35
+ - [Benchmark](#benchmark)
36
+ - [Changelog](#changelog)
37
+ - [Supported Models](#supported-models)
38
+ - [Supported Training Approaches](#supported-training-approaches)
39
+ - [Provided Datasets](#provided-datasets)
40
+ - [Requirement](#requirement)
41
+ - [Getting Started](#getting-started)
42
+ - [Projects using LLaMA Factory](#projects-using-llama-factory)
43
+ - [License](#license)
44
+ - [Citation](#citation)
45
+ - [Acknowledgement](#acknowledgement)
46
+
47
+ ## Features
48
+
49
+ - **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
50
+ - **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
51
+ - **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
52
+ - **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
53
+ - **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
54
+ - **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
55
+ - **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
56
+
57
+ ## Benchmark
58
+
59
+ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
60
+
61
+ ![benchmark](assets/benchmark.svg)
62
+
63
+ <details><summary>Definitions</summary>
64
+
65
+ - **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
66
+ - **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024)
67
+ - **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
68
+ - We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA Factory's LoRA tuning.
69
+
70
+ </details>
71
+
72
+ ## Changelog
73
+
74
+ [24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
75
+
76
+ [24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
77
+
78
+ [24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
79
+
80
+ <details><summary>Full Changelog</summary>
81
+
82
+ [24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
83
+
84
+ [24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
85
+
86
+ [24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
87
+
88
+ [24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
89
+
90
+ [24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
91
+
92
+ [24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
93
+
94
+ [24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
95
+
96
+ [24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
97
+
98
+ [24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage.
99
+
100
+ [24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
101
+
102
+ [24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage.
103
+
104
+ [24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
105
+
106
+ [24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
107
+
108
+ [24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
109
+
110
+ [24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training.
111
+
112
+ [24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage.
113
+
114
+ [24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
115
+
116
+ [24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall_en`.
117
+
118
+ [23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
119
+
120
+ [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
121
+
122
+ [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
123
+
124
+ [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
125
+
126
+ [23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention.
127
+
128
+ [23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage.
129
+
130
+ [23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
131
+
132
+ [23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings.
133
+
134
+ [23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage.
135
+
136
+ [23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode.
137
+
138
+ [23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
139
+
140
+ [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
141
+
142
+ [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
143
+
144
+ [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
145
+
146
+ [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
147
+
148
+ [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
149
+
150
+ </details>
151
+
152
+ ## Supported Models
153
+
154
+ | Model | Model size | Template |
155
+ | ------------------------------------------------------------ | -------------------------------- | --------- |
156
+ | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
157
+ | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
158
+ | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
159
+ | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
160
+ | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
161
+ | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
162
+ | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
163
+ | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
164
+ | [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
165
+ | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
166
+ | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
167
+ | [Llama 3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
168
+ | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
169
+ | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
170
+ | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
171
+ | [PaliGemma](https://huggingface.co/google) | 3B | gemma |
172
+ | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
173
+ | [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
174
+ | [Qwen/Qwen1.5/Qwen2 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
175
+ | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
176
+ | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
177
+ | [Yi/Yi-1.5](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
178
+ | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
179
+ | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
180
+
181
+ > [!NOTE]
182
+ > For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
183
+ >
184
+ > Remember to use the **SAME** template in training and inference.
185
+
186
+ Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
187
+
188
+ You also can add a custom chat template to [template.py](src/llamafactory/data/template.py).
189
+
190
+ ## Supported Training Approaches
191
+
192
+ | Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA |
193
+ | ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
194
+ | Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
195
+ | Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
196
+ | Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
197
+ | PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
198
+ | DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
199
+ | KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
200
+ | ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
201
+ | SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
202
+
203
+ ## Provided Datasets
204
+
205
+ <details><summary>Pre-training datasets</summary>
206
+
207
+ - [Wiki Demo (en)](data/wiki_demo.txt)
208
+ - [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
209
+ - [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
210
+ - [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
211
+ - [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
212
+ - [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
213
+ - [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
214
+ - [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
215
+ - [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
216
+ - [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
217
+ - [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
218
+
219
+ </details>
220
+
221
+ <details><summary>Supervised fine-tuning datasets</summary>
222
+
223
+ - [Identity (en&zh)](data/identity.json)
224
+ - [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
225
+ - [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
226
+ - [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
227
+ - [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
228
+ - [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
229
+ - [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
230
+ - [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
231
+ - [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
232
+ - [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
233
+ - [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
234
+ - [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
235
+ - [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
236
+ - [UltraChat (en)](https://github.com/thunlp/UltraChat)
237
+ - [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
238
+ - [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
239
+ - [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
240
+ - [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
241
+ - [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
242
+ - [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
243
+ - [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
244
+ - [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
245
+ - [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
246
+ - [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
247
+ - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
248
+ - [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
249
+ - [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
250
+ - [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
251
+ - [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
252
+ - [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
253
+ - [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
254
+ - [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
255
+ - [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
256
+ - [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
257
+ - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
258
+ - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
259
+ - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
260
+ - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
261
+ - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
262
+ - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
263
+ - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
264
+ - [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
265
+ - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
266
+ - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
267
+ - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
268
+ - [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
269
+ - [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
270
+ - [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
271
+ - [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
272
+
273
+ </details>
274
+
275
+ <details><summary>Preference datasets</summary>
276
+
277
+ - [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
278
+ - [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
279
+ - [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
280
+ - [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
281
+ - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
282
+ - [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
283
+ - [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
284
+
285
+ </details>
286
+
287
+ Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
288
+
289
+ ```bash
290
+ pip install --upgrade huggingface_hub
291
+ huggingface-cli login
292
+ ```
293
+
294
+ ## Requirement
295
+
296
+ | Mandatory | Minimum | Recommend |
297
+ | ------------ | ------- | --------- |
298
+ | python | 3.8 | 3.11 |
299
+ | torch | 1.13.1 | 2.3.0 |
300
+ | transformers | 4.41.2 | 4.41.2 |
301
+ | datasets | 2.16.0 | 2.19.2 |
302
+ | accelerate | 0.30.1 | 0.30.1 |
303
+ | peft | 0.11.1 | 0.11.1 |
304
+ | trl | 0.8.6 | 0.9.4 |
305
+
306
+ | Optional | Minimum | Recommend |
307
+ | ------------ | ------- | --------- |
308
+ | CUDA | 11.6 | 12.2 |
309
+ | deepspeed | 0.10.0 | 0.14.0 |
310
+ | bitsandbytes | 0.39.0 | 0.43.1 |
311
+ | vllm | 0.4.3 | 0.4.3 |
312
+ | flash-attn | 2.3.0 | 2.5.9 |
313
+
314
+ ### Hardware Requirement
315
+
316
+ \* *estimated*
317
+
318
+ | Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
319
+ | ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
320
+ | Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
321
+ | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
322
+ | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
323
+ | LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
324
+ | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
325
+ | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
326
+ | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
327
+
328
+ ## Getting Started
329
+
330
+ ### Installation
331
+
332
+ > [!IMPORTANT]
333
+ > Installation is mandatory.
334
+
335
+ ```bash
336
+ git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
337
+ cd LLaMA-Factory
338
+ pip install -e ".[torch,metrics]"
339
+ ```
340
+
341
+ Extra dependencies available: torch, torch-npu, metrics, deepspeed, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, qwen, modelscope, quality
342
+
343
+ > [!TIP]
344
+ > Use `pip install --no-deps -e .` to resolve package conflicts.
345
+
346
+ <details><summary>For Windows users</summary>
347
+
348
+ If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
349
+
350
+ ```bash
351
+ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
352
+ ```
353
+
354
+ To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
355
+
356
+ </details>
357
+
358
+ <details><summary>For Ascend NPU users</summary>
359
+
360
+ To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
361
+
362
+ ```bash
363
+ # replace the url according to your CANN version and devices
364
+ # install CANN Toolkit
365
+ wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
366
+ bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
367
+
368
+ # install CANN Kernels
369
+ wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
370
+ bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
371
+
372
+ # set env variables
373
+ source /usr/local/Ascend/ascend-toolkit/set_env.sh
374
+ ```
375
+
376
+ | Requirement | Minimum | Recommend |
377
+ | ------------ | ------- | ----------- |
378
+ | CANN | 8.0.RC1 | 8.0.RC1 |
379
+ | torch | 2.1.0 | 2.1.0 |
380
+ | torch-npu | 2.1.0 | 2.1.0.post3 |
381
+ | deepspeed | 0.13.2 | 0.13.2 |
382
+
383
+ Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
384
+
385
+ If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
386
+
387
+ Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
388
+
389
+ </details>
390
+
391
+ ### Data Preparation
392
+
393
+ Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
394
+
395
+ > [!NOTE]
396
+ > Please update `data/dataset_info.json` to use your custom dataset.
397
+
398
+ ### Quickstart
399
+
400
+ Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
401
+
402
+ ```bash
403
+ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
404
+ llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
405
+ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
406
+ ```
407
+
408
+ See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
409
+
410
+ > [!TIP]
411
+ > Use `llamafactory-cli help` to show help information.
412
+
413
+ ### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
414
+
415
+ ```bash
416
+ llamafactory-cli webui
417
+ ```
418
+
419
+ ### Build Docker
420
+
421
+ For CUDA users:
422
+
423
+ ```bash
424
+ cd docker/docker-cuda/
425
+ docker-compose up -d
426
+ docker-compose exec llamafactory bash
427
+ ```
428
+
429
+ For Ascend NPU users:
430
+
431
+ ```bash
432
+ cd docker/docker-npu/
433
+ docker-compose up -d
434
+ docker-compose exec llamafactory bash
435
+ ```
436
+
437
+ <details><summary>Build without Docker Compose</summary>
438
+
439
+ For CUDA users:
440
+
441
+ ```bash
442
+ docker build -f ./docker/docker-cuda/Dockerfile \
443
+ --build-arg INSTALL_BNB=false \
444
+ --build-arg INSTALL_VLLM=false \
445
+ --build-arg INSTALL_DEEPSPEED=false \
446
+ --build-arg INSTALL_FLASHATTN=false \
447
+ --build-arg PIP_INDEX=https://pypi.org/simple \
448
+ -t llamafactory:latest .
449
+
450
+ docker run -dit --gpus=all \
451
+ -v ./hf_cache:/root/.cache/huggingface \
452
+ -v ./ms_cache:/root/.cache/modelscope \
453
+ -v ./data:/app/data \
454
+ -v ./output:/app/output \
455
+ -p 7860:7860 \
456
+ -p 8000:8000 \
457
+ --shm-size 16G \
458
+ --name llamafactory \
459
+ llamafactory:latest
460
+
461
+ docker exec -it llamafactory bash
462
+ ```
463
+
464
+ For Ascend NPU users:
465
+
466
+ ```bash
467
+ # Choose docker image upon your environment
468
+ docker build -f ./docker/docker-npu/Dockerfile \
469
+ --build-arg INSTALL_DEEPSPEED=false \
470
+ --build-arg PIP_INDEX=https://pypi.org/simple \
471
+ -t llamafactory:latest .
472
+
473
+ # Change `device` upon your resources
474
+ docker run -dit \
475
+ -v ./hf_cache:/root/.cache/huggingface \
476
+ -v ./ms_cache:/root/.cache/modelscope \
477
+ -v ./data:/app/data \
478
+ -v ./output:/app/output \
479
+ -v /usr/local/dcmi:/usr/local/dcmi \
480
+ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
481
+ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
482
+ -v /etc/ascend_install.info:/etc/ascend_install.info \
483
+ -p 7860:7860 \
484
+ -p 8000:8000 \
485
+ --device /dev/davinci0 \
486
+ --device /dev/davinci_manager \
487
+ --device /dev/devmm_svm \
488
+ --device /dev/hisi_hdc \
489
+ --shm-size 16G \
490
+ --name llamafactory \
491
+ llamafactory:latest
492
+
493
+ docker exec -it llamafactory bash
494
+ ```
495
+
496
+ </details>
497
+
498
+ <details><summary>Details about volume</summary>
499
+
500
+ - hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
501
+ - data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
502
+ - output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
503
+
504
+ </details>
505
+
506
+ ### Deploy with OpenAI-style API and vLLM
507
+
508
+ ```bash
509
+ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
510
+ ```
511
+
512
+ > [!TIP]
513
+ > Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
514
+
515
+ ### Download from ModelScope Hub
516
+
517
+ If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
518
+
519
+ ```bash
520
+ export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
521
+ ```
522
+
523
+ Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
524
+
525
+ ### Use W&B Logger
526
+
527
+ To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
528
+
529
+ ```yaml
530
+ report_to: wandb
531
+ run_name: test_run # optional
532
+ ```
533
+
534
+ Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
535
+
536
+ ## Projects using LLaMA Factory
537
+
538
+ If you have a project that should be incorporated, please contact via email or create a pull request.
539
+
540
+ <details><summary>Click to show</summary>
541
+
542
+ 1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
543
+ 1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
544
+ 1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
545
+ 1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
546
+ 1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
547
+ 1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
548
+ 1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
549
+ 1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
550
+ 1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
551
+ 1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
552
+ 1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
553
+ 1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
554
+ 1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
555
+ 1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
556
+ 1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
557
+ 1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
558
+ 1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
559
+ 1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
560
+ 1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
561
+ 1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
562
+ 1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
563
+ 1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
564
+ 1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
565
+ 1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
566
+ 1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
567
+ 1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
568
+ 1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
569
+ 1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
570
+ 1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
571
+ 1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
572
+ 1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
573
+ 1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
574
+ 1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
575
+ 1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
576
+ 1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
577
+ 1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
578
+ 1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
579
+ 1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
580
+ 1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
581
+ 1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
582
+ 1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
583
+ 1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
584
+ 1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
585
+ 1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
586
+ 1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
587
+ 1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
588
+ 1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
589
+ 1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
590
+ 1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
591
+ 1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
592
+ 1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
593
+ 1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
594
+ 1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
595
+ 1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
596
+ 1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
597
+ 1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
598
+ 1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
599
+ 1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
600
+ 1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
601
+ 1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
602
+ 1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
603
+ 1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
604
+ 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
605
+ 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
606
+ 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
607
+ 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
608
+ 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
609
+ 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
610
+ 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
611
+ 1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
612
+ 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
613
+ 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
614
+
615
+ </details>
616
+
617
+ ## License
618
+
619
+ This repository is licensed under the [Apache-2.0 License](LICENSE).
620
+
621
+ Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
622
+
623
+ ## Citation
624
+
625
+ If this work is helpful, please kindly cite as:
626
+
627
+ ```bibtex
628
+ @inproceedings{zheng2024llamafactory,
629
+ title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
630
+ author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
631
+ booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
632
+ address={Bangkok, Thailand},
633
+ publisher={Association for Computational Linguistics},
634
+ year={2024},
635
+ url={http://arxiv.org/abs/2403.13372}
636
+ }
637
+ ```
638
+
639
+ ## Acknowledgement
640
+
641
+ This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
642
+
643
+ ## Star History
644
+
645
+ ![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)
README_zh.md ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ![# LLaMA Factory](assets/logo.png)
2
+
3
+ [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
4
+ [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
5
+ [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
6
+ [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
7
+ [![Citation](https://img.shields.io/badge/citation-72-green)](#使用了-llama-factory-的项目)
8
+ [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
9
+ [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
10
+ [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
11
+ [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
12
+ [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
13
+ [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
14
+ [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
15
+
16
+ [![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
17
+
18
+ 👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。
19
+
20
+ \[ [English](README.md) | 中文 \]
21
+
22
+ **微调大模型可以像这样轻松…**
23
+
24
+ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594
25
+
26
+ 选择你的打开方式:
27
+
28
+ - **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
29
+ - **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
30
+ - **本地机器**:请见[如何使用](#如何使用)
31
+
32
+ ## 目录
33
+
34
+ - [项目特色](#项目特色)
35
+ - [性能指标](#性能指标)
36
+ - [更新日志](#更新日志)
37
+ - [模型](#模型)
38
+ - [训练方法](#训练方法)
39
+ - [数据集](#数据集)
40
+ - [软硬件依赖](#软硬件依赖)
41
+ - [如何使用](#如何使用)
42
+ - [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
43
+ - [协议](#协议)
44
+ - [引用](#引用)
45
+ - [致谢](#致谢)
46
+
47
+ ## 项目特色
48
+
49
+ - **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
50
+ - **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
51
+ - **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
52
+ - **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
53
+ - **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
54
+ - **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
55
+ - **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
56
+
57
+ ## 性能指标
58
+
59
+ 与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
60
+
61
+ ![benchmark](assets/benchmark.svg)
62
+
63
+ <details><summary>变量定义</summary>
64
+
65
+ - **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
66
+ - **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
67
+ - **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
68
+ - 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA Factory 的 LoRA 微调中采用 `lora_rank=32`。
69
+
70
+ </details>
71
+
72
+ ## 更新日志
73
+
74
+ [24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
75
+
76
+ [24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
77
+
78
+ [24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
79
+
80
+ <details><summary>展开日志</summary>
81
+
82
+ [24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
83
+
84
+ [24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
85
+
86
+ [24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
87
+
88
+ [24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
89
+
90
+ [24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
91
+
92
+ [24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
93
+
94
+ [24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
95
+
96
+ [24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
97
+
98
+ [24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。
99
+
100
+ [24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
101
+
102
+ [24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)。
103
+
104
+ [24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)。
105
+
106
+ [24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)。
107
+
108
+ [24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
109
+
110
+ [24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。
111
+
112
+ [24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)。
113
+
114
+ [24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
115
+
116
+ [24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall_zh` 即可使模型获得工具调用能力。
117
+
118
+ [23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
119
+
120
+ [23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
121
+
122
+ [23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔搭社区下载)。
123
+
124
+ [23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。
125
+
126
+ [23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。
127
+
128
+ [23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。
129
+
130
+ [23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。
131
+
132
+ [23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。
133
+
134
+ [23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。
135
+
136
+ [23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true` 和 `max_steps: 10000` 参数来流式加载数据集。
137
+
138
+ [23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
139
+
140
+ [23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。
141
+
142
+ [23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
143
+
144
+ [23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)。
145
+
146
+ [23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
147
+
148
+ [23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)。
149
+
150
+ </details>
151
+
152
+ ## 模型
153
+
154
+ | 模型名 | 模型大小 | Template |
155
+ | ------------------------------------------------------------ | -------------------------------- | --------- |
156
+ | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
157
+ | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
158
+ | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
159
+ | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
160
+ | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
161
+ | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
162
+ | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
163
+ | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
164
+ | [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
165
+ | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
166
+ | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
167
+ | [Llama 3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
168
+ | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
169
+ | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
170
+ | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
171
+ | [PaliGemma](https://huggingface.co/google) | 3B | gemma |
172
+ | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
173
+ | [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
174
+ | [Qwen/Qwen1.5/Qwen2 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
175
+ | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
176
+ | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
177
+ | [Yi/Yi-1.5](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
178
+ | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
179
+ | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
180
+
181
+ > [!NOTE]
182
+ > 对于所有“基座”(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
183
+ >
184
+ > 请务必在训练和推理时采用**完全一致**的模板。
185
+
186
+ 项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
187
+
188
+ 您也可以在 [template.py](src/llamafactory/data/template.py) 中添加自己的对话模板。
189
+
190
+ ## 训练方法
191
+
192
+ | 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
193
+ | ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
194
+ | 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
195
+ | 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
196
+ | 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
197
+ | PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
198
+ | DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
199
+ | KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
200
+ | ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
201
+ | SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
202
+
203
+ ## 数据集
204
+
205
+ <details><summary>预训练数据集</summary>
206
+
207
+ - [Wiki Demo (en)](data/wiki_demo.txt)
208
+ - [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
209
+ - [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
210
+ - [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
211
+ - [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
212
+ - [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
213
+ - [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
214
+ - [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
215
+ - [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
216
+ - [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
217
+ - [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
218
+
219
+ </details>
220
+
221
+ <details><summary>指令微调数据集</summary>
222
+
223
+ - [Identity (en&zh)](data/identity.json)
224
+ - [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
225
+ - [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
226
+ - [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
227
+ - [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
228
+ - [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
229
+ - [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
230
+ - [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
231
+ - [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
232
+ - [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
233
+ - [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
234
+ - [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
235
+ - [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
236
+ - [UltraChat (en)](https://github.com/thunlp/UltraChat)
237
+ - [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
238
+ - [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
239
+ - [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
240
+ - [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
241
+ - [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
242
+ - [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
243
+ - [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
244
+ - [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
245
+ - [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
246
+ - [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
247
+ - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
248
+ - [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
249
+ - [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
250
+ - [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
251
+ - [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
252
+ - [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
253
+ - [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
254
+ - [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
255
+ - [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
256
+ - [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
257
+ - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
258
+ - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
259
+ - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
260
+ - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
261
+ - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
262
+ - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
263
+ - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
264
+ - [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
265
+ - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
266
+ - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
267
+ - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
268
+ - [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
269
+ - [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
270
+ - [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
271
+ - [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
272
+
273
+ </details>
274
+
275
+ <details><summary>偏好数据集</summary>
276
+
277
+ - [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
278
+ - [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
279
+ - [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
280
+ - [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
281
+ - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
282
+ - [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
283
+ - [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
284
+
285
+ </details>
286
+
287
+ 部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
288
+
289
+ ```bash
290
+ pip install --upgrade huggingface_hub
291
+ huggingface-cli login
292
+ ```
293
+
294
+ ## 软硬件依赖
295
+
296
+ | 必需项 | 至少 | 推荐 |
297
+ | ------------ | ------- | --------- |
298
+ | python | 3.8 | 3.11 |
299
+ | torch | 1.13.1 | 2.3.0 |
300
+ | transformers | 4.41.2 | 4.41.2 |
301
+ | datasets | 2.16.0 | 2.19.2 |
302
+ | accelerate | 0.30.1 | 0.30.1 |
303
+ | peft | 0.11.1 | 0.11.1 |
304
+ | trl | 0.8.6 | 0.9.4 |
305
+
306
+ | 可选项 | 至少 | 推荐 |
307
+ | ------------ | ------- | --------- |
308
+ | CUDA | 11.6 | 12.2 |
309
+ | deepspeed | 0.10.0 | 0.14.0 |
310
+ | bitsandbytes | 0.39.0 | 0.43.1 |
311
+ | vllm | 0.4.3 | 0.4.3 |
312
+ | flash-attn | 2.3.0 | 2.5.9 |
313
+
314
+ ### 硬件依赖
315
+
316
+ \* *估算值*
317
+
318
+ | 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
319
+ | ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
320
+ | Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
321
+ | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
322
+ | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
323
+ | LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
324
+ | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
325
+ | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
326
+ | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
327
+
328
+ ## 如何使用
329
+
330
+ ### 安装 LLaMA Factory
331
+
332
+ > [!IMPORTANT]
333
+ > 此步骤为必需。
334
+
335
+ ```bash
336
+ git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
337
+ cd LLaMA-Factory
338
+ pip install -e ".[torch,metrics]"
339
+ ```
340
+
341
+ 可选的额外依赖项:torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、qwen、modelscope、quality
342
+
343
+ > [!TIP]
344
+ > 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
345
+
346
+ <details><summary>Windows 用户指南</summary>
347
+
348
+ 如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
349
+
350
+ ```bash
351
+ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
352
+ ```
353
+
354
+ 如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。
355
+
356
+ </details>
357
+
358
+ <details><summary>昇腾 NPU 用户指南</summary>
359
+
360
+ 在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
361
+
362
+ ```bash
363
+ # 请替换 URL 为 CANN 版本和设备型号对应的 URL
364
+ # 安装 CANN Toolkit
365
+ wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
366
+ bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
367
+
368
+ # 安装 CANN Kernels
369
+ wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
370
+ bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
371
+
372
+ # 设置环境变量
373
+ source /usr/local/Ascend/ascend-toolkit/set_env.sh
374
+ ```
375
+
376
+ | 依赖项 | 至少 | 推荐 |
377
+ | ------------ | ------- | ----------- |
378
+ | CANN | 8.0.RC1 | 8.0.RC1 |
379
+ | torch | 2.1.0 | 2.1.0 |
380
+ | torch-npu | 2.1.0 | 2.1.0.post3 |
381
+ | deepspeed | 0.13.2 | 0.13.2 |
382
+
383
+ 请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
384
+
385
+ 如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。
386
+
387
+ 下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
388
+
389
+ </details>
390
+
391
+ ### 数据准备
392
+
393
+ 关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
394
+
395
+ > [!NOTE]
396
+ > 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
397
+
398
+ ### 快速开始
399
+
400
+ 下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
401
+
402
+ ```bash
403
+ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
404
+ llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
405
+ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
406
+ ```
407
+
408
+ 高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
409
+
410
+ > [!TIP]
411
+ > 使用 `llamafactory-cli help` 显示帮助信息。
412
+
413
+ ### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
414
+
415
+ ```bash
416
+ llamafactory-cli webui
417
+ ```
418
+
419
+ ### 构建 Docker
420
+
421
+ CUDA 用户:
422
+
423
+ ```bash
424
+ cd docker/docker-cuda/
425
+ docker-compose up -d
426
+ docker-compose exec llamafactory bash
427
+ ```
428
+
429
+ 昇腾 NPU 用户:
430
+
431
+ ```bash
432
+ cd docker/docker-npu/
433
+ docker-compose up -d
434
+ docker-compose exec llamafactory bash
435
+ ```
436
+
437
+ <details><summary>不使用 Docker Compose 构建</summary>
438
+
439
+ CUDA 用户:
440
+
441
+ ```bash
442
+ docker build -f ./docker/docker-cuda/Dockerfile \
443
+ --build-arg INSTALL_BNB=false \
444
+ --build-arg INSTALL_VLLM=false \
445
+ --build-arg INSTALL_DEEPSPEED=false \
446
+ --build-arg INSTALL_FLASHATTN=false \
447
+ --build-arg PIP_INDEX=https://pypi.org/simple \
448
+ -t llamafactory:latest .
449
+
450
+ docker run -dit --gpus=all \
451
+ -v ./hf_cache:/root/.cache/huggingface \
452
+ -v ./ms_cache:/root/.cache/modelscope \
453
+ -v ./data:/app/data \
454
+ -v ./output:/app/output \
455
+ -p 7860:7860 \
456
+ -p 8000:8000 \
457
+ --shm-size 16G \
458
+ --name llamafactory \
459
+ llamafactory:latest
460
+
461
+ docker exec -it llamafactory bash
462
+ ```
463
+
464
+ 昇腾 NPU 用户:
465
+
466
+ ```bash
467
+ # 根据您的环境选择镜像
468
+ docker build -f ./docker/docker-npu/Dockerfile \
469
+ --build-arg INSTALL_DEEPSPEED=false \
470
+ --build-arg PIP_INDEX=https://pypi.org/simple \
471
+ -t llamafactory:latest .
472
+
473
+ # 根据您的资源更改 `device`
474
+ docker run -dit \
475
+ -v ./hf_cache:/root/.cache/huggingface \
476
+ -v ./ms_cache:/root/.cache/modelscope \
477
+ -v ./data:/app/data \
478
+ -v ./output:/app/output \
479
+ -v /usr/local/dcmi:/usr/local/dcmi \
480
+ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
481
+ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
482
+ -v /etc/ascend_install.info:/etc/ascend_install.info \
483
+ -p 7860:7860 \
484
+ -p 8000:8000 \
485
+ --device /dev/davinci0 \
486
+ --device /dev/davinci_manager \
487
+ --device /dev/devmm_svm \
488
+ --device /dev/hisi_hdc \
489
+ --shm-size 16G \
490
+ --name llamafactory \
491
+ llamafactory:latest
492
+
493
+ docker exec -it llamafactory bash
494
+ ```
495
+
496
+ </details>
497
+
498
+ <details><summary>数据卷详情</summary>
499
+
500
+ - hf_cache:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
501
+ - data:宿主机中存放数据集的文件夹路径。
502
+ - output:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
503
+
504
+ </details>
505
+
506
+ ### 利用 vLLM 部署 OpenAI API
507
+
508
+ ```bash
509
+ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
510
+ ```
511
+
512
+ > [!TIP]
513
+ > API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。
514
+
515
+ ### 从魔搭社区下载
516
+
517
+ 如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
518
+
519
+ ```bash
520
+ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
521
+ ```
522
+
523
+ 将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
524
+
525
+ ### 使用 W&B 面板
526
+
527
+ 若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
528
+
529
+ ```yaml
530
+ report_to: wandb
531
+ run_name: test_run # 可选
532
+ ```
533
+
534
+ 在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
535
+
536
+ ## 使用了 LLaMA Factory 的项目
537
+
538
+ 如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
539
+
540
+ <details><summary>点击显示</summary>
541
+
542
+ 1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
543
+ 1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
544
+ 1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
545
+ 1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
546
+ 1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
547
+ 1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
548
+ 1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
549
+ 1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
550
+ 1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
551
+ 1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
552
+ 1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
553
+ 1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
554
+ 1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
555
+ 1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
556
+ 1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
557
+ 1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
558
+ 1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
559
+ 1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
560
+ 1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
561
+ 1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
562
+ 1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
563
+ 1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
564
+ 1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
565
+ 1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
566
+ 1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
567
+ 1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
568
+ 1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
569
+ 1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
570
+ 1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
571
+ 1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
572
+ 1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
573
+ 1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
574
+ 1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
575
+ 1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
576
+ 1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
577
+ 1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
578
+ 1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
579
+ 1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
580
+ 1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
581
+ 1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
582
+ 1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
583
+ 1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
584
+ 1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
585
+ 1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
586
+ 1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
587
+ 1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
588
+ 1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
589
+ 1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
590
+ 1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
591
+ 1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
592
+ 1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
593
+ 1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
594
+ 1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
595
+ 1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
596
+ 1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
597
+ 1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
598
+ 1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
599
+ 1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
600
+ 1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
601
+ 1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
602
+ 1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
603
+ 1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
604
+ 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
605
+ 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
606
+ 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
607
+ 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
608
+ 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
609
+ 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
610
+ 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
611
+ 1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。
612
+ 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
613
+ 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.
614
+
615
+ </details>
616
+
617
+ ## 协议
618
+
619
+ 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
620
+
621
+ 使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
622
+
623
+ ## 引用
624
+
625
+ 如果您觉得此项目有帮助,请考虑以下列格式引用
626
+
627
+ ```bibtex
628
+ @inproceedings{zheng2024llamafactory,
629
+ title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
630
+ author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
631
+ booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
632
+ address={Bangkok, Thailand},
633
+ publisher={Association for Computational Linguistics},
634
+ year={2024},
635
+ url={http://arxiv.org/abs/2403.13372}
636
+ }
637
+ ```
638
+
639
+ ## 致谢
640
+
641
+ 本项目受益于 [PEFT](https://github.com/huggingface/peft)、[TRL](https://github.com/huggingface/trl)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
642
+
643
+ ## Star History
644
+
645
+ ![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)
pyproject.toml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools>=61.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [tool.ruff]
6
+ target-version = "py38"
7
+ line-length = 119
8
+ indent-width = 4
9
+
10
+ [tool.ruff.lint]
11
+ ignore = ["C408", "C901", "E501", "E731", "E741", "W605"]
12
+ select = ["C", "E", "F", "I", "W"]
13
+
14
+ [tool.ruff.lint.isort]
15
+ lines-after-imports = 2
16
+ known-first-party = ["llamafactory"]
17
+ known-third-party = [
18
+ "accelerate",
19
+ "datasets",
20
+ "gradio",
21
+ "numpy",
22
+ "peft",
23
+ "torch",
24
+ "transformers",
25
+ "trl"
26
+ ]
27
+
28
+ [tool.ruff.format]
29
+ quote-style = "double"
30
+ indent-style = "space"
31
+ docstring-code-format = true
32
+ skip-magic-trailing-comma = false
33
+ line-ending = "auto"
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers>=4.41.2
2
+ datasets>=2.16.0
3
+ accelerate>=0.30.1
4
+ peft>=0.11.1
5
+ trl>=0.8.6
6
+ gradio>=4.0.0
7
+ pandas>=2.0.0
8
+ scipy
9
+ einops
10
+ sentencepiece
11
+ tiktoken
12
+ protobuf
13
+ uvicorn
14
+ pydantic
15
+ fastapi
16
+ sse-starlette
17
+ matplotlib>=3.7.0
18
+ fire
19
+ packaging
20
+ pyyaml
21
+ numpy<2.0.0
setup.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 the LlamaFactory team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import re
17
+
18
+ from setuptools import find_packages, setup
19
+
20
+
21
+ def get_version():
22
+ with open(os.path.join("src", "llamafactory", "extras", "env.py"), "r", encoding="utf-8") as f:
23
+ file_content = f.read()
24
+ pattern = r"{}\W*=\W*\"([^\"]+)\"".format("VERSION")
25
+ (version,) = re.findall(pattern, file_content)
26
+ return version
27
+
28
+
29
+ def get_requires():
30
+ with open("requirements.txt", "r", encoding="utf-8") as f:
31
+ file_content = f.read()
32
+ lines = [line.strip() for line in file_content.strip().split("\n") if not line.startswith("#")]
33
+ return lines
34
+
35
+
36
+ extra_require = {
37
+ "torch": ["torch>=1.13.1"],
38
+ "torch-npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
39
+ "metrics": ["nltk", "jieba", "rouge-chinese"],
40
+ "deepspeed": ["deepspeed>=0.10.0"],
41
+ "bitsandbytes": ["bitsandbytes>=0.39.0"],
42
+ "hqq": ["hqq"],
43
+ "eetq": ["eetq"],
44
+ "gptq": ["optimum>=1.17.0", "auto-gptq>=0.5.0"],
45
+ "awq": ["autoawq"],
46
+ "aqlm": ["aqlm[gpu]>=1.1.0"],
47
+ "vllm": ["vllm>=0.4.3"],
48
+ "galore": ["galore-torch"],
49
+ "badam": ["badam>=1.2.1"],
50
+ "qwen": ["transformers_stream_generator"],
51
+ "modelscope": ["modelscope"],
52
+ "dev": ["ruff", "pytest"],
53
+ }
54
+
55
+
56
+ def main():
57
+ setup(
58
+ name="llamafactory",
59
+ version=get_version(),
60
+ author="hiyouga",
61
+ author_email="hiyouga" "@" "buaa.edu.cn",
62
+ description="Easy-to-use LLM fine-tuning framework",
63
+ long_description=open("README.md", "r", encoding="utf-8").read(),
64
+ long_description_content_type="text/markdown",
65
+ keywords=["LLaMA", "BLOOM", "Falcon", "LLM", "ChatGPT", "transformer", "pytorch", "deep learning"],
66
+ license="Apache 2.0 License",
67
+ url="https://github.com/hiyouga/LLaMA-Factory",
68
+ package_dir={"": "src"},
69
+ packages=find_packages("src"),
70
+ python_requires=">=3.8.0",
71
+ install_requires=get_requires(),
72
+ extras_require=extra_require,
73
+ entry_points={"console_scripts": ["llamafactory-cli = llamafactory.cli:main"]},
74
+ classifiers=[
75
+ "Development Status :: 4 - Beta",
76
+ "Intended Audience :: Developers",
77
+ "Intended Audience :: Education",
78
+ "Intended Audience :: Science/Research",
79
+ "License :: OSI Approved :: Apache Software License",
80
+ "Operating System :: OS Independent",
81
+ "Programming Language :: Python :: 3",
82
+ "Programming Language :: Python :: 3.8",
83
+ "Programming Language :: Python :: 3.9",
84
+ "Programming Language :: Python :: 3.10",
85
+ "Programming Language :: Python :: 3.11",
86
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
87
+ ],
88
+ )
89
+
90
+
91
+ if __name__ == "__main__":
92
+ main()