Spaces:
Running
on
Zero
Running
on
Zero
Update src/app/response.py
Browse files- src/app/response.py +13 -8
src/app/response.py
CHANGED
@@ -17,13 +17,14 @@ model, processor = load_model_and_processor(model_name, device)
|
|
17 |
|
18 |
|
19 |
@spaces.GPU
|
20 |
-
def caption_image(image: PIL.Image.Image, max_new_tokens: int) -> str:
|
21 |
"""
|
22 |
Generates a caption based on the given image using the model.
|
23 |
|
24 |
Args:
|
25 |
- image (PIL.Image.Image): The input image to be processed.
|
26 |
- max_new_tokens (int): The maximum number of new tokens to generate.
|
|
|
27 |
|
28 |
Returns:
|
29 |
str: The generated caption text.
|
@@ -35,22 +36,26 @@ def caption_image(image: PIL.Image.Image, max_new_tokens: int) -> str:
|
|
35 |
|
36 |
# Prepare the inputs
|
37 |
prompt = "caption en"
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Generate the response
|
41 |
with torch.inference_mode():
|
42 |
-
|
43 |
-
**
|
44 |
)
|
45 |
-
|
46 |
-
|
47 |
-
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
48 |
|
49 |
# Log the successful generation of the caption
|
50 |
logging.info("Caption generated successfully.")
|
51 |
|
52 |
# Return the generated caption
|
53 |
-
return
|
54 |
|
55 |
# Handle exceptions that may occur during caption generation
|
56 |
except Exception as e:
|
|
|
17 |
|
18 |
|
19 |
@spaces.GPU
|
20 |
+
def caption_image(image: PIL.Image.Image, max_new_tokens: int, sampling: bool) -> str:
|
21 |
"""
|
22 |
Generates a caption based on the given image using the model.
|
23 |
|
24 |
Args:
|
25 |
- image (PIL.Image.Image): The input image to be processed.
|
26 |
- max_new_tokens (int): The maximum number of new tokens to generate.
|
27 |
+
- sampling (bool): Whether to use sampling or not.
|
28 |
|
29 |
Returns:
|
30 |
str: The generated caption text.
|
|
|
36 |
|
37 |
# Prepare the inputs
|
38 |
prompt = "caption en"
|
39 |
+
model_inputs = (
|
40 |
+
processor(text=prompt, images=image, return_tensors="pt")
|
41 |
+
.to(torch.bfloat16)
|
42 |
+
.to(device)
|
43 |
+
)
|
44 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
45 |
|
46 |
# Generate the response
|
47 |
with torch.inference_mode():
|
48 |
+
generation = model.generate(
|
49 |
+
**model_inputs, max_new_tokens=max_new_tokens, do_sample=sampling
|
50 |
)
|
51 |
+
generation = generation[0][input_len:]
|
52 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
|
|
53 |
|
54 |
# Log the successful generation of the caption
|
55 |
logging.info("Caption generated successfully.")
|
56 |
|
57 |
# Return the generated caption
|
58 |
+
return decoded
|
59 |
|
60 |
# Handle exceptions that may occur during caption generation
|
61 |
except Exception as e:
|