Spaces:
Runtime error
Runtime error
File size: 4,693 Bytes
ad22c5c 371ea68 ad22c5c 371ea68 b326fe8 46528f5 ad22c5c 371ea68 b326fe8 46528f5 b326fe8 ad22c5c c4f349b ad22c5c 5188b2b ad22c5c 237ee28 ad22c5c c4f349b ad22c5c 237ee28 ad22c5c 237ee28 ad22c5c 237ee28 ad22c5c c4f349b ad22c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
from transformers import T5EncoderModel, CLIPTextModelWithProjection
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
text_encoder_repo = "silveroxides/CLIP_L_Fur"
text_encoder_2_repo = "silveroxides/SeaArtFurryCLIP_G"
text_encoder_3_repo = "silveroxides/t5xxl_flan_enc"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
text_encoder = CLIPTextModelWithProjection.from_pretrained(text_encoder_repo, torch_dtype=torch_dtype)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(text_encoder_2_repo, torch_dtype=torch_dtype)
text_encoder_3 = T5EncoderModel.from_pretrained(text_encoder_3_repo, torch_dtype=torch_dtype)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1728
@spaces.GPU
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Stable Diffusion 3.5 Large Turbo (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo)")
gr.Markdown("Space for testing alternative text encoders with SD 3.5 L Turbo")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=8,
lines=6,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=2,
lines=2,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=-1.0,
maximum=7.5,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|