import streamlit as st import pandas as pd #title st.title("Predict Death Event") st.write("Created by Sihar Pangaribuan") # User imput age = st.number_input(label='Age', min_value=40, max_value=95, value=40, step=1) anaemia = st.selectbox(label='Anemia', options=['0', '1']) creatinine_phosphokinase = st.number_input(label='Creatinine Phosphokinase', min_value=23, max_value=7861, value=23, step=1) diabetes = st.selectbox(label='Diabetes', options=['0', '1']) ejection_fraction = st.number_input(label='Ejection Fraction', min_value=14, max_value=80, value=14, step=1) high_blood_pressure = st.selectbox(label='High Blood Pressure', options=['0', '1']) platelets = st.number_input(label='Platelets', min_value=25100.0, max_value=850000.0, value=25100.0, step=1.0) serum_creatinine = st.number_input(label='Serum Creatinine', min_value=0.5, max_value=9.4, value=0.5, step=0.1) serum_sodium = st.number_input(label='Serum Sodium', min_value=133, max_value=148, value=133, step=1) sex = st.selectbox(label='Sex', options=['0', '1']) smoking = st.selectbox(label='Smoking', options=['0', '1']) time = st.number_input(label='Time', min_value=4, max_value=285, value=4, step=1) # Convert ke data frame data = pd.DataFrame({'age': [age], 'anemia': [anaemia], 'creatinine_phosphokinase': [creatinine_phosphokinase], 'diabetes':[diabetes], 'ejection_fraction': [ejection_fraction], 'high_blood_pressure': [high_blood_pressure], 'platelets': [platelets], 'serum_creatinine': [serum_creatinine], 'serum_sodium': [serum_sodium], 'sex': [sex], 'smoking': [smoking], 'time': [time]}) # model predict death = rf_randomCV.predict(data).tolist()[0] # interpretation st.write('Predition Result: ') if death == 0: st.text('live') else: st.text('Death')