LOC_cleanliness / app.py
siddhantuniyal's picture
Upload 3 files
4671bd2 verified
raw
history blame
951 Bytes
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from keras.applications.imagenet_utils import preprocess_input
from tensorflow.keras.preprocessing import image
import requests
from PIL import Image
import io
model = load_model('api\\vgg_model.h5')
def infer(image_url):
# Load and preprocess the image
response = requests.get(image_url)
image = Image.open(io.BytesIO(response.content))
image = image.resize((224, 224)) # Resize image to match input size of VGG16
x = image
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Perform inference
preds = model.predict(x)
result = preds[0][0]
# Determine the label
if result < preds[0][1]:
label = "messy"
else:
label = "clean"
return label
# Create a Gradio interface
iface = gr.Interface(fn=infer, inputs="text", outputs="text", title="Image Classifier")
iface.launch()