shripadbhat's picture
Update app.py
0b6ce8b
raw
history blame
771 Bytes
import gradio as gr
from transformers import pipeline
qa_model = pipeline("question-answering",'a-ware/bart-squadv2')
def fetch_answer(question, context ):
return qa_model(question = question, context = context)['answer']
demo = gr.Interface(
fn=fetch_answer,
#take input as real time audio and use OPENAPI whisper for S2T
#clinical note upload as file (.This is an example of simple text. or doc/docx file)
inputs=[gr.Textbox(lines=2, label='Question', show_label=True, placeholder="What is age of patient ?"),
gr.Textbox(lines=10, label='Clinical Note', show_label=True, placeholder="The patient is a 71 year old male...")],
outputs="text",
examples=[['questiontest1','context1'],['questiontest2','context2']]
)
demo.launch()