Spaces:
Sleeping
Sleeping
shriarul5273
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,177 +1,175 @@
|
|
1 |
-
import torch
|
2 |
-
from models.common import DetectMultiBackend
|
3 |
-
from utils.general import (check_img_size, cv2,
|
4 |
-
non_max_suppression, scale_boxes)
|
5 |
-
from utils.plots import Annotator, colors
|
6 |
-
import numpy as np
|
7 |
-
import gradio as gr
|
8 |
-
import time
|
9 |
-
data = 'data/coco128.yaml'
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
'
|
43 |
-
'
|
44 |
-
'
|
45 |
-
'
|
46 |
-
'
|
47 |
-
'
|
48 |
-
'
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
image
|
68 |
-
|
69 |
-
|
70 |
-
img
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
label =
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
'data/
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
with gr.
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
outputs=[video_output,fps_video])
|
176 |
-
|
177 |
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from models.common import DetectMultiBackend
|
3 |
+
from utils.general import (check_img_size, cv2,
|
4 |
+
non_max_suppression, scale_boxes)
|
5 |
+
from utils.plots import Annotator, colors
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
import time
|
9 |
+
data = 'data/coco128.yaml'
|
10 |
+
|
11 |
+
|
12 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
|
13 |
+
# Resize and pad image while meeting stride-multiple constraints
|
14 |
+
shape = im.shape[:2] # current shape [height, width]
|
15 |
+
if isinstance(new_shape, int):
|
16 |
+
new_shape = (new_shape, new_shape)
|
17 |
+
|
18 |
+
# Scale ratio (new / old)
|
19 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
20 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
21 |
+
r = min(r, 1.0)
|
22 |
+
|
23 |
+
# Compute padding
|
24 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
25 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
26 |
+
|
27 |
+
if auto: # minimum rectangle
|
28 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
29 |
+
|
30 |
+
dw /= 2 # divide padding into 2 sides
|
31 |
+
dh /= 2
|
32 |
+
|
33 |
+
if shape[::-1] != new_unpad: # resize
|
34 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
35 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
36 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
37 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
38 |
+
return im, r, (dw, dh)
|
39 |
+
|
40 |
+
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
41 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
42 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
43 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
44 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
45 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
46 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
47 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
48 |
+
'hair drier', 'toothbrush']
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def detect(im,model,device,iou_threshold=0.45,confidence_threshold=0.25):
|
53 |
+
im = np.array(im)
|
54 |
+
imgsz=(640, 640) # inference size (pixels)
|
55 |
+
data = 'data/coco128.yaml' # data.yaml path
|
56 |
+
# Load model
|
57 |
+
stride, names, pt = model.stride, model.names, model.pt
|
58 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
59 |
+
|
60 |
+
# Run inference
|
61 |
+
# model.warmup(imgsz=(1)) # warmup
|
62 |
+
|
63 |
+
imgs = im.copy() # for NMS
|
64 |
+
|
65 |
+
image, ratio, dwdh = letterbox(im, auto=False)
|
66 |
+
print(image.shape)
|
67 |
+
image = image.transpose((2, 0, 1))
|
68 |
+
img = torch.from_numpy(image).to(device)
|
69 |
+
img = img.float() # uint8 to fp16/32
|
70 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
71 |
+
if img.ndimension() == 3:
|
72 |
+
img = img.unsqueeze(0)
|
73 |
+
|
74 |
+
# Inference
|
75 |
+
start = time.time()
|
76 |
+
pred = model(img, augment=False)
|
77 |
+
fps_inference = 1/(time.time()-start)
|
78 |
+
# NMS
|
79 |
+
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, None, False, max_det=10)
|
80 |
+
|
81 |
+
|
82 |
+
for i, det in enumerate(pred): # detections per image
|
83 |
+
if len(det):
|
84 |
+
# Rescale boxes from img_size to im0 size
|
85 |
+
det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], imgs.shape).round()
|
86 |
+
|
87 |
+
annotator = Annotator(imgs, line_width=3, example=str(names))
|
88 |
+
hide_labels = False
|
89 |
+
hide_conf = False
|
90 |
+
# Write results
|
91 |
+
for *xyxy, conf, cls in reversed(det):
|
92 |
+
c = int(cls) # integer class
|
93 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
94 |
+
print(xyxy,label)
|
95 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
96 |
+
|
97 |
+
return imgs,fps_inference
|
98 |
+
|
99 |
+
|
100 |
+
def inference(img,model_link,iou_threshold,confidence_threshold):
|
101 |
+
print(model_link)
|
102 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
103 |
+
# Load model
|
104 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
105 |
+
model = DetectMultiBackend('weights/'+str(model_link)+'.pt', device=device, dnn=False, data=data, fp16=False)
|
106 |
+
return detect(img,model,device,iou_threshold,confidence_threshold)
|
107 |
+
|
108 |
+
|
109 |
+
def inference2(video,model_link,iou_threshold,confidence_threshold):
|
110 |
+
print(model_link)
|
111 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
112 |
+
# Load model
|
113 |
+
model = DetectMultiBackend('weights/'+str(model_link)+'.pt', device=device, dnn=False, data=data, fp16=False)
|
114 |
+
frames = cv2.VideoCapture(video)
|
115 |
+
fps = frames.get(cv2.CAP_PROP_FPS)
|
116 |
+
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
117 |
+
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
|
118 |
+
fps_video = []
|
119 |
+
while frames.isOpened():
|
120 |
+
ret,frame = frames.read()
|
121 |
+
if not ret:
|
122 |
+
break
|
123 |
+
frame,fps = detect(frame,model,device,iou_threshold,confidence_threshold)
|
124 |
+
fps_video.append(fps)
|
125 |
+
finalVideo.write(frame)
|
126 |
+
frames.release()
|
127 |
+
finalVideo.release()
|
128 |
+
return 'output.mp4',np.mean(fps_video)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
examples_images = ['data/images/bus.jpg',
|
133 |
+
'data/images/zidane.jpg',]
|
134 |
+
examples_videos = ['data/video/input_0.mp4',
|
135 |
+
'data/video/input_1.mp4']
|
136 |
+
|
137 |
+
models = ['yolov5s','yolov5n','yolov5m','yolov5l','yolov5x']
|
138 |
+
|
139 |
+
with gr.Blocks() as demo:
|
140 |
+
gr.Markdown("## YOLOv5 Inference")
|
141 |
+
with gr.Tab("Image"):
|
142 |
+
gr.Markdown("## YOLOv5 Inference on Image")
|
143 |
+
with gr.Row():
|
144 |
+
image_input = gr.Image(type='pil', label="Input Image", sources="upload")
|
145 |
+
image_output = gr.Image(type='pil', label="Output Image", sources="upload")
|
146 |
+
fps_image = gr.Number(value=0,label='FPS')
|
147 |
+
image_drop = gr.Dropdown(choices=models,value=models[0])
|
148 |
+
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
149 |
+
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
150 |
+
gr.Examples(examples=examples_images,inputs=image_input,outputs=image_output)
|
151 |
+
text_button = gr.Button("Detect")
|
152 |
+
with gr.Tab("Video"):
|
153 |
+
gr.Markdown("## YOLOv5 Inference on Video")
|
154 |
+
with gr.Row():
|
155 |
+
video_input = gr.Video(label="Input Image", sources="upload")
|
156 |
+
video_output = gr.Video(label="Output Image",format="mp4")
|
157 |
+
fps_video = gr.Number(value=0,label='FPS')
|
158 |
+
video_drop = gr.Dropdown(choices=models,value=models[0])
|
159 |
+
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
160 |
+
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
161 |
+
gr.Examples(examples=examples_videos,inputs=video_input,outputs=video_output)
|
162 |
+
video_button = gr.Button("Detect")
|
163 |
+
|
164 |
+
with gr.Tab("Webcam Video"):
|
165 |
+
gr.Markdown("## YOLOv5 Inference on Webcam Video")
|
166 |
+
gr.Markdown("Coming Soon")
|
167 |
+
|
168 |
+
text_button.click(inference, inputs=[image_input,image_drop,
|
169 |
+
image_iou_threshold,image_conf_threshold],
|
170 |
+
outputs=[image_output,fps_image])
|
171 |
+
video_button.click(inference2, inputs=[video_input,video_drop,
|
172 |
+
video_iou_threshold,video_conf_threshold],
|
173 |
+
outputs=[video_output,fps_video])
|
174 |
+
|
|
|
|
|
175 |
demo.launch()
|