Yolov5 / app.py
shriarul5273's picture
Upload app.py
b59914c verified
import torch
from models.common import DetectMultiBackend
from utils.general import (check_img_size, cv2,
non_max_suppression, scale_boxes)
from utils.plots import Annotator, colors
import numpy as np
import gradio as gr
import time
data = 'data/coco128.yaml'
import spaces
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
@spaces.GPU
def detect(im,model,device,iou_threshold=0.45,confidence_threshold=0.25):
im = np.array(im)
imgsz=(640, 640) # inference size (pixels)
data = 'data/coco128.yaml' # data.yaml path
# Load model
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Run inference
# model.warmup(imgsz=(1)) # warmup
imgs = im.copy() # for NMS
image, ratio, dwdh = letterbox(im, auto=False)
print(image.shape)
image = image.transpose((2, 0, 1))
img = torch.from_numpy(image).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
start = time.time()
pred = model(img, augment=False)
fps_inference = 1/(time.time()-start)
# NMS
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, None, False, max_det=10)
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], imgs.shape).round()
annotator = Annotator(imgs, line_width=3, example=str(names))
hide_labels = False
hide_conf = False
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
print(xyxy,label)
annotator.box_label(xyxy, label, color=colors(c, True))
return imgs,fps_inference
def inference(img,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = DetectMultiBackend('weights/'+str(model_link)+'.pt', device=device, dnn=False, data=data, fp16=False)
return detect(img,model,device,iou_threshold,confidence_threshold)
def inference2(video,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
model = DetectMultiBackend('weights/'+str(model_link)+'.pt', device=device, dnn=False, data=data, fp16=False)
frames = cv2.VideoCapture(video)
fps = frames.get(cv2.CAP_PROP_FPS)
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
fps_video = []
while frames.isOpened():
ret,frame = frames.read()
if not ret:
break
frame,fps = detect(frame,model,device,iou_threshold,confidence_threshold)
fps_video.append(fps)
finalVideo.write(frame)
frames.release()
finalVideo.release()
return 'output.mp4',np.mean(fps_video)
examples_images = ['data/images/bus.jpg',
'data/images/zidane.jpg',]
examples_videos = ['data/video/input_0.mp4',
'data/video/input_1.mp4']
models = ['yolov5s','yolov5n','yolov5m','yolov5l','yolov5x']
with gr.Blocks() as demo:
gr.Markdown("## YOLOv5 Inference")
with gr.Tab("Image"):
gr.Markdown("## YOLOv5 Inference on Image")
with gr.Row():
image_input = gr.Image(type='pil', label="Input Image", sources="upload")
image_output = gr.Image(type='pil', label="Output Image", sources="upload")
fps_image = gr.Number(value=0,label='FPS')
image_drop = gr.Dropdown(choices=models,value=models[0])
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
gr.Examples(examples=examples_images,inputs=image_input,outputs=image_output)
text_button = gr.Button("Detect")
with gr.Tab("Video"):
gr.Markdown("## YOLOv5 Inference on Video")
with gr.Row():
video_input = gr.Video(label="Input Image", sources="upload")
video_output = gr.Video(label="Output Image",format="mp4")
fps_video = gr.Number(value=0,label='FPS')
video_drop = gr.Dropdown(choices=models,value=models[0])
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
gr.Examples(examples=examples_videos,inputs=video_input,outputs=video_output)
video_button = gr.Button("Detect")
with gr.Tab("Webcam Video"):
gr.Markdown("## YOLOv5 Inference on Webcam Video")
gr.Markdown("Coming Soon")
text_button.click(inference, inputs=[image_input,image_drop,
image_iou_threshold,image_conf_threshold],
outputs=[image_output,fps_image])
video_button.click(inference2, inputs=[video_input,video_drop,
video_iou_threshold,video_conf_threshold],
outputs=[video_output,fps_video])
demo.launch()