shriarul5273 commited on
Commit
0eab673
·
1 Parent(s): cd95635

initial commit

Browse files
Files changed (2) hide show
  1. app.py +203 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ from skimage.util import random_noise
5
+ import cv2
6
+
7
+ # Assuming ImageSlider is a custom or extended component of Gradio
8
+ from gradio_imageslider import ImageSlider
9
+
10
+ # Function to add noise to the image
11
+ def add_noise(image, noise_type, mean=0, var=0.01, amount=0.05, salt_vs_pepper=0.5):
12
+ # Convert image to float for processing
13
+ image = np.array(image).astype(float) / 255.0 # Normalize the image
14
+ kwargs = {}
15
+
16
+ # Set noise parameters based on the selected noise type
17
+ if noise_type in ['gaussian', 'speckle']:
18
+ kwargs['mean'] = mean
19
+ kwargs['var'] = var
20
+ elif noise_type in ['salt', 'pepper', 's&p']:
21
+ kwargs['amount'] = amount
22
+ if noise_type == 's&p':
23
+ kwargs['salt_vs_pepper'] = salt_vs_pepper
24
+ elif noise_type == 'localvar':
25
+ kwargs['local_vars'] = np.full(image.shape, var)
26
+
27
+ # Add noise to the image
28
+ noisy_image = random_noise(image, mode=noise_type.replace("s&p", "salt&pepper"), **kwargs, clip=True)
29
+ return Image.fromarray((noisy_image * 255).astype(np.uint8))
30
+
31
+ # Function to apply denoising to the image
32
+ def apply_denoising(image, method, gaussian_kernel, median_kernel, bilateral_diameter, bilateral_sigma_color, bilateral_sigma_space, nlm_h, nlm_template_window_size, nlm_search_window_size):
33
+ # Convert image to array for processing
34
+ image = np.array(image)
35
+ # Apply the selected denoising method
36
+ if method == "Gaussian Blur":
37
+ denoised = cv2.GaussianBlur(image, (gaussian_kernel, gaussian_kernel), 0)
38
+ elif method == "Median Blur":
39
+ denoised = cv2.medianBlur(image, median_kernel)
40
+ elif method == "Bilateral Filter":
41
+ denoised = cv2.bilateralFilter(image, bilateral_diameter, bilateral_sigma_color, bilateral_sigma_space)
42
+ elif method == "Non-Local Means":
43
+ denoised = cv2.fastNlMeansDenoisingColored(image, None, nlm_h, nlm_h, nlm_template_window_size, nlm_search_window_size)
44
+ return Image.fromarray(denoised)
45
+
46
+ # Function to apply morphological operations
47
+ def apply_morphological_operation(image, kernel_size, iterations, operation):
48
+ image = np.array(image)
49
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
50
+ if operation == "Erosion":
51
+ result = cv2.erode(image, kernel, iterations=iterations)
52
+ elif operation == "Dilation":
53
+ result = cv2.dilate(image, kernel, iterations=iterations)
54
+ elif operation == "Opening":
55
+ result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, iterations=iterations)
56
+ elif operation == "Closing":
57
+ result = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations=iterations)
58
+ return Image.fromarray(result)
59
+
60
+ # Function to apply edge detection
61
+ def apply_edge_detection(image, min_val, max_val, operation, kernel_size):
62
+ image = np.array(image.convert('L'))
63
+ if operation == "Canny":
64
+ edges = cv2.Canny(image, min_val, max_val)
65
+ elif operation == "Sobel-X":
66
+ edges = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=kernel_size)
67
+ elif operation == "Sobel-Y":
68
+ edges = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=kernel_size)
69
+ elif operation == "Sobel-XY":
70
+ edges_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=kernel_size)
71
+ edges_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=kernel_size)
72
+ edges = cv2.addWeighted(edges_x, 0.5, edges_y, 0.5, 0)
73
+ elif operation == "Laplacian":
74
+ edges = cv2.Laplacian(image, cv2.CV_64F, ksize=kernel_size)
75
+ edges = np.clip(edges, 0, 255).astype(np.uint8)
76
+ return Image.fromarray(edges)
77
+
78
+ # Gradio interface setup
79
+ with gr.Blocks() as demo:
80
+ gr.Markdown("# OpenCV Image Processing with Gradio - Add Noise, Remove Noise, Morphological Operations and Edge Detection")
81
+
82
+ tab_names = ["Add Noise", "Remove Noise", "Morphological Operations", "Edge Detection"]
83
+
84
+ # ---- ADD NOISE TAB ----
85
+ with gr.Tab("Add Noise"):
86
+ with gr.Row():
87
+ img_input = gr.Image(label="Input Image", type="pil")
88
+ img_output = gr.Image(label="Output Image", type="pil")
89
+ noise_type = gr.Radio(["gaussian", "localvar", "poisson", "salt", "pepper", "s&p", "speckle"], label="Type of Noise", value="gaussian")
90
+ mean_slider = gr.Slider(0, 1, value=0, label="Mean (for Gaussian/Speckle)", visible=True)
91
+ var_slider = gr.Slider(0, 0.1, value=0.01, label="Variance", visible=True)
92
+ amount_slider = gr.Slider(0, 1, value=0.05, label="Amount (for Salt/Pepper/S&P)", visible=False)
93
+ salt_vs_pepper_slider = gr.Slider(0, 1, value=0.5, label="Salt vs Pepper (for S&P)", visible=False)
94
+
95
+ noise_button = gr.Button("Add Noise")
96
+
97
+ def on_noise_type_change(noise_type):
98
+ if noise_type in ['gaussian', 'speckle']:
99
+ return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
100
+ elif noise_type in ['salt', 'pepper']:
101
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
102
+ elif noise_type == 's&p':
103
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
104
+ elif noise_type == 'localvar':
105
+ return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
106
+
107
+ noise_type.change(fn=on_noise_type_change, inputs=noise_type, outputs=[mean_slider, var_slider, amount_slider, salt_vs_pepper_slider])
108
+ noise_button.click(fn=add_noise, inputs=[img_input, noise_type, mean_slider, var_slider, amount_slider, salt_vs_pepper_slider], outputs=img_output)
109
+
110
+ # ---- REMOVE NOISE TAB ----
111
+ with gr.Tab("Remove Noise"):
112
+ with gr.Row():
113
+ denoise_img_input = gr.Image(label="Input Noisy Image", type="pil")
114
+ denoise_img_output = gr.Image(label="Output Image", type="pil")
115
+ denoise_method = gr.Radio(["Gaussian Blur", "Median Blur", "Bilateral Filter", "Non-Local Means"], label="Denoising Method", value="Gaussian Blur")
116
+ gaussian_kernel = gr.Slider(1, 31, step=2, value=5, label="Gaussian Kernel Size", visible=True)
117
+ median_kernel = gr.Slider(1, 31, step=2, value=5, label="Median Kernel Size", visible=False)
118
+ bilateral_diameter = gr.Slider(1, 31, step=2, value=9, label="Bilateral Filter Diameter", visible=False)
119
+ bilateral_sigma_color = gr.Slider(1, 150, value=75, label="Bilateral Filter Sigma Color", visible=False)
120
+ bilateral_sigma_space = gr.Slider(1, 150, value=75, label="Bilateral Filter Sigma Space", visible=False)
121
+ nlm_h = gr.Slider(1, 20, value=10, label="Non-Local Means h", visible=False)
122
+ nlm_template_window_size = gr.Slider(1, 21, step=2, value=7, label="Non-Local Means Template Window Size", visible=False)
123
+ nlm_search_window_size = gr.Slider(1, 51, step=2, value=21, label="Non-Local Means Search Window Size", visible=False)
124
+ denoise_button = gr.Button("Remove Noise")
125
+
126
+ def on_denoise_method_change(method):
127
+ if method == "Gaussian Blur":
128
+ return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
129
+ elif method == "Median Blur":
130
+ return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
131
+ elif method == "Bilateral Filter":
132
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
133
+ elif method == "Non-Local Means":
134
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
135
+
136
+ denoise_method.change(fn=on_denoise_method_change, inputs=denoise_method, outputs=[gaussian_kernel, median_kernel, bilateral_diameter, bilateral_sigma_color, bilateral_sigma_space, nlm_h, nlm_template_window_size, nlm_search_window_size])
137
+ denoise_button.click(fn=apply_denoising, inputs=[denoise_img_input, denoise_method, gaussian_kernel, median_kernel, bilateral_diameter, bilateral_sigma_color, bilateral_sigma_space, nlm_h, nlm_template_window_size, nlm_search_window_size], outputs=denoise_img_output)
138
+
139
+ # ---- MORPHOLOGICAL OPERATIONS TAB ----
140
+ with gr.Tab("Morphological Operations"):
141
+ with gr.Row():
142
+ morph_img_input = gr.Image(label="Input Image", type="pil")
143
+ morph_img_output = gr.Image(label="Output Image", type="pil")
144
+ kernel_slider = gr.Slider(1, 11, value=3, step=2, label="Kernel Size")
145
+ iter_slider = gr.Slider(1, 10, value=1, step=1, label="Iterations")
146
+ morph_operation = gr.Radio(["Erosion", "Dilation", "Opening", "Closing"], label="Morphological Operation", value="Erosion")
147
+ apply_morph_button = gr.Button("Apply Morphological Operation")
148
+ apply_morph_button.click(fn=apply_morphological_operation, inputs=[morph_img_input, kernel_slider, iter_slider, morph_operation], outputs=morph_img_output)
149
+
150
+ # ---- EDGE DETECTION TAB ----
151
+ with gr.Tab("Edge Detection"):
152
+ with gr.Row():
153
+ edge_img_input = gr.Image(label="Input Image", type="pil")
154
+ edge_img_output = gr.Image(label="Output Image", type="pil")
155
+ min_val_slider = gr.Slider(50, 150, label="Min Threshold", visible=True)
156
+ max_val_slider = gr.Slider(100, 200, label="Max Threshold", visible=True)
157
+ kernel_size_slider = gr.Slider(1, 11, value=3, step=2, label="Kernel Size", visible=True)
158
+ edge_operation = gr.Radio(["Canny", "Sobel-X", "Sobel-Y", "Sobel-XY", "Laplacian"], label="Edge Operation", value="Canny")
159
+ apply_edge_button = gr.Button("Apply Edge Detection")
160
+
161
+ def on_edge_operation_change(operation):
162
+ if operation == "Canny":
163
+ return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
164
+ else:
165
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
166
+
167
+ edge_operation.change(fn=on_edge_operation_change, inputs=edge_operation, outputs=[min_val_slider, max_val_slider, kernel_size_slider])
168
+ apply_edge_button.click(fn=apply_edge_detection, inputs=[edge_img_input, min_val_slider, max_val_slider, edge_operation, kernel_size_slider], outputs=edge_img_output)
169
+
170
+ # ---- DYNAMIC TRANSFER BUTTON ----
171
+ with gr.Row():
172
+ source_tab_dropdown = gr.Dropdown(tab_names, label="Transfer From Tab")
173
+ destination_tab_dropdown = gr.Dropdown(tab_names, label="Transfer To Tab")
174
+ transfer_image_button = gr.Button("Transfer Image")
175
+
176
+ def dynamic_image_transfer(add_noise_input, add_noise_output, denoise_input, denoise_output, morph_input, morph_output, edge_input, edge_output, source, destination):
177
+ image_to_send = None
178
+ if source == "Add Noise":
179
+ image_to_send = add_noise_output if add_noise_output else add_noise_input
180
+ elif source == "Remove Noise":
181
+ image_to_send = denoise_output if denoise_output else denoise_input
182
+ elif source == "Morphological Operations":
183
+ image_to_send = morph_output if morph_output else morph_input
184
+ elif source == "Edge Detection":
185
+ image_to_send = edge_output if edge_output else edge_input
186
+
187
+ updates = {
188
+ "Add Noise": gr.update(value=image_to_send) if destination == "Add Noise" else gr.update(),
189
+ "Remove Noise": gr.update(value=image_to_send) if destination == "Remove Noise" else gr.update(),
190
+ "Morphological Operations": gr.update(value=image_to_send) if destination == "Morphological Operations" else gr.update(),
191
+ "Edge Detection": gr.update(value=image_to_send) if destination == "Edge Detection" else gr.update(),
192
+ }
193
+
194
+ return [updates.get("Add Noise"), updates.get("Remove Noise"), updates.get("Morphological Operations"), updates.get("Edge Detection")]
195
+
196
+ transfer_image_button.click(
197
+ fn=dynamic_image_transfer,
198
+ inputs=[img_input, img_output, denoise_img_input, denoise_img_output, morph_img_input, morph_img_output, edge_img_input, edge_img_output, source_tab_dropdown, destination_tab_dropdown],
199
+ outputs=[img_input, denoise_img_input, morph_img_input, edge_img_input]
200
+ )
201
+
202
+ # Launch the Gradio interface
203
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ opencv-python
2
+ numpy
3
+ PIL
4
+ scikit-image
5
+ gradio