Upload 2 files
Browse files- app.py +125 -20
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,6 +2,9 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
5 |
|
6 |
# Load model and tokenizer globally for efficiency
|
7 |
model_name = "tabularisai/multilingual-sentiment-analysis"
|
@@ -27,36 +30,128 @@ def predict_sentiment(texts):
|
|
27 |
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def process_file(file_obj):
|
31 |
"""
|
32 |
Process the input file and add sentiment analysis results
|
33 |
"""
|
34 |
try:
|
35 |
-
# Read the file based on its extension
|
36 |
file_path = file_obj.name
|
|
|
|
|
|
|
37 |
if file_path.endswith('.csv'):
|
|
|
38 |
df = pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
|
39 |
elif file_path.endswith(('.xlsx', '.xls')):
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
else:
|
42 |
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
raise ValueError("Input file must contain a 'Reviews' column.")
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
except Exception as e:
|
62 |
raise gr.Error(str(e))
|
@@ -64,8 +159,12 @@ def process_file(file_obj):
|
|
64 |
|
65 |
# Create Gradio interface
|
66 |
with gr.Blocks() as interface:
|
67 |
-
gr.Markdown("# Review Sentiment Analysis")
|
68 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
69 |
|
70 |
with gr.Row():
|
71 |
file_input = gr.File(
|
@@ -77,13 +176,19 @@ with gr.Blocks() as interface:
|
|
77 |
analyze_btn = gr.Button("Analyze Sentiments")
|
78 |
|
79 |
with gr.Row():
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
analyze_btn.click(
|
84 |
fn=process_file,
|
85 |
inputs=[file_input],
|
86 |
-
outputs=[
|
87 |
)
|
88 |
|
89 |
# Launch the interface
|
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
from collections import defaultdict
|
8 |
|
9 |
# Load model and tokenizer globally for efficiency
|
10 |
model_name = "tabularisai/multilingual-sentiment-analysis"
|
|
|
30 |
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
|
31 |
|
32 |
|
33 |
+
def process_single_sheet(df, product_name):
|
34 |
+
"""
|
35 |
+
Process a single dataframe and return sentiment analysis results
|
36 |
+
"""
|
37 |
+
if 'Reviews' not in df.columns:
|
38 |
+
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
|
39 |
+
|
40 |
+
reviews = df['Reviews'].fillna("")
|
41 |
+
sentiments = predict_sentiment(reviews.tolist())
|
42 |
+
df['Sentiment'] = sentiments
|
43 |
+
|
44 |
+
# Calculate sentiment distribution
|
45 |
+
sentiment_counts = pd.Series(sentiments).value_counts()
|
46 |
+
|
47 |
+
return df, sentiment_counts
|
48 |
+
|
49 |
+
|
50 |
+
def create_comparison_charts(sentiment_results):
|
51 |
+
"""
|
52 |
+
Create comparison charts for different products
|
53 |
+
Returns two plotly figures: bar chart and pie chart
|
54 |
+
"""
|
55 |
+
# Prepare data for plotting
|
56 |
+
products = []
|
57 |
+
sentiments = []
|
58 |
+
counts = []
|
59 |
+
|
60 |
+
for product, sentiment_counts in sentiment_results.items():
|
61 |
+
for sentiment, count in sentiment_counts.items():
|
62 |
+
products.append(product)
|
63 |
+
sentiments.append(sentiment)
|
64 |
+
counts.append(count)
|
65 |
+
|
66 |
+
plot_df = pd.DataFrame({
|
67 |
+
'Product': products,
|
68 |
+
'Sentiment': sentiments,
|
69 |
+
'Count': counts
|
70 |
+
})
|
71 |
+
|
72 |
+
# Create stacked bar chart
|
73 |
+
bar_fig = px.bar(plot_df,
|
74 |
+
x='Product',
|
75 |
+
y='Count',
|
76 |
+
color='Sentiment',
|
77 |
+
title='Sentiment Distribution by Product',
|
78 |
+
labels={'Count': 'Number of Reviews'},
|
79 |
+
color_discrete_sequence=px.colors.qualitative.Set3)
|
80 |
+
|
81 |
+
# Create pie chart for overall sentiment distribution
|
82 |
+
pie_fig = px.pie(plot_df,
|
83 |
+
values='Count',
|
84 |
+
names='Sentiment',
|
85 |
+
title='Overall Sentiment Distribution',
|
86 |
+
color_discrete_sequence=px.colors.qualitative.Set3)
|
87 |
+
|
88 |
+
# Create summary table
|
89 |
+
summary_df = plot_df.pivot_table(
|
90 |
+
values='Count',
|
91 |
+
index='Product',
|
92 |
+
columns='Sentiment',
|
93 |
+
fill_value=0
|
94 |
+
).round(2)
|
95 |
+
|
96 |
+
# Add total reviews column
|
97 |
+
summary_df['Total Reviews'] = summary_df.sum(axis=1)
|
98 |
+
|
99 |
+
# Calculate percentage of positive reviews (Positive + Very Positive)
|
100 |
+
positive_cols = ['Positive', 'Very Positive']
|
101 |
+
positive_cols = [col for col in positive_cols if col in summary_df.columns]
|
102 |
+
summary_df['Positive Ratio'] = (summary_df[positive_cols].sum(axis=1) / summary_df['Total Reviews'] * 100).round(2)
|
103 |
+
|
104 |
+
return bar_fig, pie_fig, summary_df
|
105 |
+
|
106 |
+
|
107 |
def process_file(file_obj):
|
108 |
"""
|
109 |
Process the input file and add sentiment analysis results
|
110 |
"""
|
111 |
try:
|
|
|
112 |
file_path = file_obj.name
|
113 |
+
sentiment_results = defaultdict(pd.Series)
|
114 |
+
all_processed_dfs = {}
|
115 |
+
|
116 |
if file_path.endswith('.csv'):
|
117 |
+
# Process single CSV file
|
118 |
df = pd.read_csv(file_path)
|
119 |
+
product_name = "Product" # Default name for CSV
|
120 |
+
processed_df, sentiment_counts = process_single_sheet(df, product_name)
|
121 |
+
all_processed_dfs[product_name] = processed_df
|
122 |
+
sentiment_results[product_name] = sentiment_counts
|
123 |
+
|
124 |
elif file_path.endswith(('.xlsx', '.xls')):
|
125 |
+
# Process multiple sheets in Excel file
|
126 |
+
excel_file = pd.ExcelFile(file_path)
|
127 |
+
|
128 |
+
for sheet_name in excel_file.sheet_names:
|
129 |
+
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
130 |
+
processed_df, sentiment_counts = process_single_sheet(df, sheet_name)
|
131 |
+
all_processed_dfs[sheet_name] = processed_df
|
132 |
+
sentiment_results[sheet_name] = sentiment_counts
|
133 |
else:
|
134 |
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
|
135 |
|
136 |
+
# Create visualizations
|
137 |
+
bar_chart, pie_chart, summary_table = create_comparison_charts(sentiment_results)
|
|
|
138 |
|
139 |
+
# Save results to a new Excel file
|
140 |
+
output_path = "sentiment_analysis_results.xlsx"
|
141 |
+
with pd.ExcelWriter(output_path) as writer:
|
142 |
+
# Save processed data
|
143 |
+
for sheet_name, df in all_processed_dfs.items():
|
144 |
+
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
145 |
|
146 |
+
# Save summary
|
147 |
+
summary_table.to_excel(writer, sheet_name='Summary', index=True)
|
148 |
|
149 |
+
return (
|
150 |
+
bar_chart,
|
151 |
+
pie_chart,
|
152 |
+
summary_table,
|
153 |
+
output_path
|
154 |
+
)
|
155 |
|
156 |
except Exception as e:
|
157 |
raise gr.Error(str(e))
|
|
|
159 |
|
160 |
# Create Gradio interface
|
161 |
with gr.Blocks() as interface:
|
162 |
+
gr.Markdown("# Multi-Product Review Sentiment Analysis")
|
163 |
+
gr.Markdown("""
|
164 |
+
Upload a file to analyze sentiments:
|
165 |
+
- For CSV: Single product reviews with 'Reviews' column
|
166 |
+
- For Excel: Multiple sheets, each named after the product, with 'Reviews' column
|
167 |
+
""")
|
168 |
|
169 |
with gr.Row():
|
170 |
file_input = gr.File(
|
|
|
176 |
analyze_btn = gr.Button("Analyze Sentiments")
|
177 |
|
178 |
with gr.Row():
|
179 |
+
bar_plot = gr.Plot(label="Sentiment Distribution by Product")
|
180 |
+
pie_plot = gr.Plot(label="Overall Sentiment Distribution")
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
summary_table = gr.Dataframe(label="Summary Statistics")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
output_file = gr.File(label="Download Detailed Results")
|
187 |
|
188 |
analyze_btn.click(
|
189 |
fn=process_file,
|
190 |
inputs=[file_input],
|
191 |
+
outputs=[bar_plot, pie_plot, summary_table, output_file]
|
192 |
)
|
193 |
|
194 |
# Launch the interface
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ transformers
|
|
2 |
openpyxl
|
3 |
torch
|
4 |
pandas
|
5 |
-
gradio
|
|
|
|
2 |
openpyxl
|
3 |
torch
|
4 |
pandas
|
5 |
+
gradio
|
6 |
+
plotly
|