Spaces:
Sleeping
Sleeping
shreeyad
commited on
Commit
·
ab7200a
0
Parent(s):
add streamlit app
Browse files- .streamlit/config.toml +6 -0
- README.md +0 -0
- app.py +165 -0
- data/hindi_baseline_all_scores.csv +0 -0
- data/nepali_baseline_all_scores.csv +0 -0
- data/nepali_lora_all_scores.csv +0 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
base="light"
|
3 |
+
primaryColor="#1d5965"
|
4 |
+
textColor="#1d5965"
|
5 |
+
|
6 |
+
|
README.md
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
class LLaMAScoreAnalyzer:
|
9 |
+
def __init__(self):
|
10 |
+
self.languages = ["Nepali", "Hindi"]
|
11 |
+
self.models = ["Baseline", "LoRA"]
|
12 |
+
self.scores_gpt = ["relevance_score", "cc_score", "syntax_score", "complete_score"]
|
13 |
+
self.rouge_bleu = ["rougeL", "bleu"]
|
14 |
+
self.categories = ["hallucination_type", "is_repeat"]
|
15 |
+
self.DATA_PATH = {
|
16 |
+
"Nepali": {"Baseline": "./data/nepali_baseline_all_scores.csv", "LoRA": "./data/nepali_lora_all_scores.csv"},
|
17 |
+
"Hindi": {"Baseline": "./data/hindi_baseline_all_scores.csv", "LoRA": "./data/nepali_baseline_all_scores.csv"}
|
18 |
+
}
|
19 |
+
|
20 |
+
def load_samples(self, lang):
|
21 |
+
# Show samples for data for selected languages
|
22 |
+
# st.write(data.sample(5))
|
23 |
+
cols_to_show = ["instruction", "input", "output"]
|
24 |
+
for model in self.DATA_PATH[lang]:
|
25 |
+
df = pd.read_csv(self.DATA_PATH[lang][model])
|
26 |
+
df.rename({"output": "expected_output"})
|
27 |
+
df[model+"_Response"] = df["cleaned_response"]
|
28 |
+
cols_to_show.append(model+"_Response")
|
29 |
+
cols_to_show = cols_to_show + ["relevance_score", "cc_score", "syntax_score", "complete_score", "rougeL", "blue", "is_repeat", "hallucination_type"]
|
30 |
+
df = df[[col for col in cols_to_show if col in df.columns]]
|
31 |
+
st.write(df.sample(5))
|
32 |
+
|
33 |
+
|
34 |
+
def load_data(self, lang, model):
|
35 |
+
df = pd.read_csv(self.DATA_PATH[lang][model])
|
36 |
+
df['Language'] = lang
|
37 |
+
df['Model'] = model
|
38 |
+
return df
|
39 |
+
|
40 |
+
def draw_specific_plots(self, data, categories, x_variable, title):
|
41 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
42 |
+
|
43 |
+
palette = sns.color_palette("tab10", len(categories) * len(data[x_variable].unique()))
|
44 |
+
|
45 |
+
for i, category in enumerate(categories):
|
46 |
+
for j, unique_value in enumerate(data[x_variable].unique()):
|
47 |
+
subset = data[data[x_variable] == unique_value]
|
48 |
+
sns.kdeplot(data=subset, x=category, fill=True, common_norm=False, alpha=0.5,
|
49 |
+
ax=ax, color=palette[i * len(data[x_variable].unique()) + j],
|
50 |
+
label=f"{category} ({unique_value})")
|
51 |
+
|
52 |
+
ax.set_title(title, fontsize=16)
|
53 |
+
ax.set_xlabel(f"{x_variable}", fontsize=12)
|
54 |
+
ax.set_ylabel("Density", fontsize=12)
|
55 |
+
ax.legend(title="Category (Language/Model)")
|
56 |
+
|
57 |
+
return fig
|
58 |
+
|
59 |
+
def draw_combined_density_plot(self, data, title):
|
60 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
61 |
+
|
62 |
+
palette = sns.color_palette("tab10", len(self.scores_gpt))
|
63 |
+
|
64 |
+
for i, category in enumerate(self.scores_gpt):
|
65 |
+
sns.kdeplot(data=data, x=category, fill=True, common_norm=False, alpha=0.5, ax=ax, label=category, color=palette[i])
|
66 |
+
|
67 |
+
ax.set_title(title, fontsize=16)
|
68 |
+
ax.set_xlabel("Score", fontsize=12)
|
69 |
+
ax.set_ylabel("Density", fontsize=12)
|
70 |
+
ax.legend(title="Score Categories")
|
71 |
+
|
72 |
+
return fig
|
73 |
+
|
74 |
+
|
75 |
+
def score_analyzer(self):
|
76 |
+
st.sidebar.markdown("""
|
77 |
+
This App was created as a part of the project: "Fine-tuning LLaMA 3 with Low-Rank Adaptation for Nepali and Hindi"
|
78 |
+
""")
|
79 |
+
st.title("Findings from Fine-tuning LLaMA 3 with Low-Rank Adaptation for Nepali and Hind! ")
|
80 |
+
st.markdown("""
|
81 |
+
Full post here:
|
82 |
+
""")
|
83 |
+
show_samples = st.sidebar.checkbox("Show Sample Data", value=False)
|
84 |
+
detailed_view = st.sidebar.checkbox("Enable Detailed Charts View", value=False)
|
85 |
+
|
86 |
+
selected_languages = st.sidebar.multiselect("Select Languages", self.languages, default="Nepali")
|
87 |
+
selected_gpt_scoring = st.sidebar.multiselect("Select Score Category", self.scores_gpt, default="relevance_score")
|
88 |
+
selected_models = st.sidebar.multiselect("Select Models", self.models, default="Baseline")
|
89 |
+
|
90 |
+
dfs = []
|
91 |
+
for lang in selected_languages:
|
92 |
+
for model in selected_models:
|
93 |
+
df = self.load_data(lang, model)
|
94 |
+
dfs.append(df)
|
95 |
+
if show_samples:
|
96 |
+
for lang in selected_languages:
|
97 |
+
st.write(f"Sample data for {lang}")
|
98 |
+
self.load_samples(lang)
|
99 |
+
|
100 |
+
combined_data = pd.concat(dfs, ignore_index=True)
|
101 |
+
if detailed_view:
|
102 |
+
for language in selected_languages:
|
103 |
+
language_data = combined_data[combined_data['Language'] == language]
|
104 |
+
title = f"Distribution of Scores Across Models for {language}"
|
105 |
+
fig = self.draw_specific_plots(language_data, selected_gpt_scoring, 'Model', title)
|
106 |
+
st.pyplot(fig)
|
107 |
+
for model in selected_models:
|
108 |
+
model_data = combined_data[combined_data['Model'] == model]
|
109 |
+
title = f"Distribution of Scores Across Languages for {model}"
|
110 |
+
fig = self.draw_specific_plots(model_data, selected_gpt_scoring, 'Language', title)
|
111 |
+
st.pyplot(fig)
|
112 |
+
|
113 |
+
st.sidebar.markdown("""
|
114 |
+
Show additional evaluation scores and categories below:
|
115 |
+
""")
|
116 |
+
additional_score_categories = st.sidebar.checkbox("Hallucination and Instruction Repeat Statistics", value=False)
|
117 |
+
if additional_score_categories:
|
118 |
+
additional_categories = st.sidebar.multiselect("Select Category", self.categories, default="hallucination_type")
|
119 |
+
# for language in selected_languages:
|
120 |
+
# language_data = combined_data[combined_data['Language'] == language]
|
121 |
+
# title = f"Distribution of Scores Across Models for {language}"
|
122 |
+
# fig = self.draw_specific_plots(language_data, additional_categories, 'Model', title)
|
123 |
+
# st.pyplot(fig)
|
124 |
+
# for model in selected_models:
|
125 |
+
# model_data = combined_data[combined_data['Model'] == model]
|
126 |
+
# title = f"Distribution of Scores Across Languages for {model}"
|
127 |
+
# fig = self.draw_specific_plots(model_data, additional_categories, 'Language', title)
|
128 |
+
# st.pyplot(fig)
|
129 |
+
|
130 |
+
rouge_bleu_score = st.sidebar.checkbox("Rouge and BLEU Scores", value=False)
|
131 |
+
if rouge_bleu_score:
|
132 |
+
rouge_bleu_scores = st.sidebar.multiselect("Select Category", self.rouge_bleu, default="rougeL")
|
133 |
+
for language in selected_languages:
|
134 |
+
language_data = combined_data[combined_data['Language'] == language]
|
135 |
+
title = f"Distribution of Scores Across Models for {language}"
|
136 |
+
fig = self.draw_specific_plots(language_data, rouge_bleu_scores, 'Model', title)
|
137 |
+
st.pyplot(fig)
|
138 |
+
for model in selected_models:
|
139 |
+
model_data = combined_data[combined_data['Model'] == model]
|
140 |
+
title = f"Distribution of Scores Across Languages for {model}"
|
141 |
+
fig = self.draw_specific_plots(model_data, rouge_bleu_scores, 'Language', title)
|
142 |
+
st.pyplot(fig)
|
143 |
+
else:
|
144 |
+
for language in selected_languages:
|
145 |
+
for model in selected_models:
|
146 |
+
title = f"Combined Density of All Categories for {language} - {model}"
|
147 |
+
fig = self.draw_combined_density_plot(combined_data[(combined_data['Language'] == language) &
|
148 |
+
(combined_data['Model'] == model)], title)
|
149 |
+
st.pyplot(fig)
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
def main():
|
155 |
+
|
156 |
+
st.sidebar.header("Findings from Fine-tuning LLaMA 3 with Low-Rank Adaptation for Nepali and Hindi!")
|
157 |
+
|
158 |
+
analyzer = LLaMAScoreAnalyzer()
|
159 |
+
analyzer.score_analyzer()
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
main()
|
165 |
+
|
data/hindi_baseline_all_scores.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/nepali_baseline_all_scores.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/nepali_lora_all_scores.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|