Show-o / training_utils.py
JosephPai
init
8741abe
import math
import random
import torch
import torch.nn.functional as F
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing import Any, List, Tuple, Union
##################################################
# config utils
##################################################
def get_config():
cli_conf = OmegaConf.from_cli()
yaml_conf = OmegaConf.load(cli_conf.config)
conf = OmegaConf.merge(yaml_conf, cli_conf)
return conf
def flatten_omega_conf(cfg: Any, resolve: bool = False) -> List[Tuple[str, Any]]:
ret = []
def handle_dict(key: Any, value: Any, resolve: bool) -> List[Tuple[str, Any]]:
return [(f"{key}.{k1}", v1) for k1, v1 in flatten_omega_conf(value, resolve=resolve)]
def handle_list(key: Any, value: Any, resolve: bool) -> List[Tuple[str, Any]]:
return [(f"{key}.{idx}", v1) for idx, v1 in flatten_omega_conf(value, resolve=resolve)]
if isinstance(cfg, DictConfig):
for k, v in cfg.items_ex(resolve=resolve):
if isinstance(v, DictConfig):
ret.extend(handle_dict(k, v, resolve=resolve))
elif isinstance(v, ListConfig):
ret.extend(handle_list(k, v, resolve=resolve))
else:
ret.append((str(k), v))
elif isinstance(cfg, ListConfig):
for idx, v in enumerate(cfg._iter_ex(resolve=resolve)):
if isinstance(v, DictConfig):
ret.extend(handle_dict(idx, v, resolve=resolve))
elif isinstance(v, ListConfig):
ret.extend(handle_list(idx, v, resolve=resolve))
else:
ret.append((str(idx), v))
else:
assert False
return ret
##################################################
# training utils
##################################################
def soft_target_cross_entropy(logits, targets, soft_targets):
# ignore the first token from logits and targets (class id token)
logits = logits[:, 1:]
targets = targets[:, 1:]
logits = logits[..., : soft_targets.shape[-1]]
log_probs = F.log_softmax(logits, dim=-1)
padding_mask = targets.eq(-100)
loss = torch.sum(-soft_targets * log_probs, dim=-1)
loss.masked_fill_(padding_mask, 0.0)
# Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
loss = loss.sum() / num_active_elements
return loss
def get_loss_weight(t, mask, min_val=0.3):
return 1 - (1 - mask) * ((1 - t) * (1 - min_val))[:, None]
def mask_or_random_replace_tokens(image_tokens, mask_id, config, mask_schedule, is_train=True):
batch_size, seq_len = image_tokens.shape
if not is_train and config.training.get("eval_mask_ratios", None):
mask_prob = random.choices(config.training.eval_mask_ratios, k=batch_size)
mask_prob = torch.tensor(mask_prob, device=image_tokens.device)
else:
# Sample a random timestep for each image
timesteps = torch.rand(batch_size, device=image_tokens.device)
# Sample a random mask probability for each image using timestep and cosine schedule
mask_prob = mask_schedule(timesteps)
mask_prob = mask_prob.clip(config.training.min_masking_rate)
# creat a random mask for each image
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
mask_contiguous_region_prob = config.training.get("mask_contiguous_region_prob", None)
if mask_contiguous_region_prob is None:
mask_contiguous_region = False
else:
mask_contiguous_region = random.random() < mask_contiguous_region_prob
if not mask_contiguous_region:
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
mask = batch_randperm < num_token_masked.unsqueeze(-1)
else:
resolution = int(seq_len ** 0.5)
mask = torch.zeros((batch_size, resolution, resolution), device=image_tokens.device)
# TODO - would be nice to vectorize
for batch_idx, num_token_masked_ in enumerate(num_token_masked):
num_token_masked_ = int(num_token_masked_.item())
# NOTE: a bit handwavy with the bounds but gets a rectangle of ~num_token_masked_
num_token_masked_height = random.randint(
math.ceil(num_token_masked_ / resolution), min(resolution, num_token_masked_)
)
num_token_masked_height = min(num_token_masked_height, resolution)
num_token_masked_width = math.ceil(num_token_masked_ / num_token_masked_height)
num_token_masked_width = min(num_token_masked_width, resolution)
start_idx_height = random.randint(0, resolution - num_token_masked_height)
start_idx_width = random.randint(0, resolution - num_token_masked_width)
mask[
batch_idx,
start_idx_height: start_idx_height + num_token_masked_height,
start_idx_width: start_idx_width + num_token_masked_width,
] = 1
mask = mask.reshape(batch_size, seq_len)
mask = mask.to(torch.bool)
# mask images and create input and labels
if config.training.get("noise_type", "mask"):
input_ids = torch.where(mask, mask_id, image_tokens)
elif config.training.get("noise_type", "random_replace"):
# sample random tokens from the vocabulary
random_tokens = torch.randint_like(
image_tokens, low=0, high=config.model.codebook_size, device=image_tokens.device
)
input_ids = torch.where(mask, random_tokens, image_tokens)
else:
raise ValueError(f"noise_type {config.training.noise_type} not supported")
if (
config.training.get("predict_all_tokens", False)
or config.training.get("noise_type", "mask") == "random_replace"
):
labels = image_tokens
loss_weight = get_loss_weight(mask_prob, mask.long())
else:
labels = torch.where(mask, image_tokens, -100)
loss_weight = None
return input_ids, labels, loss_weight, mask_prob
##################################################
# misc
##################################################
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
from torchvision import transforms
def image_transform(image, resolution=256, normalize=True):
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
if normalize:
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
return image