|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
import wandb |
|
from models import Showo, MAGVITv2, get_mask_chedule |
|
from prompting_utils import UniversalPrompting, create_attention_mask_predict_next |
|
from training.utils import get_config, flatten_omega_conf, image_transform |
|
from transformers import AutoTokenizer |
|
import torch.nn.functional as F |
|
|
|
def get_vq_model_class(model_type): |
|
if model_type == "magvitv2": |
|
return MAGVITv2 |
|
else: |
|
raise ValueError(f"model_type {model_type} not supported.") |
|
|
|
if __name__ == '__main__': |
|
|
|
config = get_config() |
|
|
|
resume_wandb_run = config.wandb.resume |
|
run_id = config.wandb.get("run_id", None) |
|
if run_id is None: |
|
resume_wandb_run = False |
|
run_id = wandb.util.generate_id() |
|
config.wandb.run_id = run_id |
|
|
|
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} |
|
|
|
wandb.init( |
|
project="demo", |
|
name=config.experiment.name + '_t2i' + f'_{config.mode}', |
|
config=wandb_config, |
|
) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left") |
|
|
|
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, |
|
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), |
|
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob) |
|
|
|
vq_model = get_vq_model_class(config.model.vq_model.type) |
|
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) |
|
vq_model.requires_grad_(False) |
|
vq_model.eval() |
|
|
|
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device) |
|
model.eval() |
|
|
|
mask_token_id = model.config.mask_token_id |
|
|
|
|
|
if config.get("validation_prompts_file", None) is not None: |
|
config.dataset.params.validation_prompts_file = config.validation_prompts_file |
|
config.training.batch_size = config.batch_size |
|
config.training.guidance_scale = config.guidance_scale |
|
config.training.generation_timesteps = config.generation_timesteps |
|
|
|
|
|
if config.mode == 'inpainting': |
|
|
|
prompt = [config.prompt] * config.batch_size |
|
inpainting_image = Image.open(config.image_path).convert("RGB") |
|
inpainting_mask = Image.open(config.inpainting_mask_path).convert("L") |
|
|
|
import pdb |
|
pdb.set_trace() |
|
|
|
inpainting_image = image_transform(inpainting_image, resolution=config.dataset.params.resolution).to(device) |
|
inpainting_mask = image_transform(inpainting_mask, resolution=config.dataset.params.resolution, normalize=False) |
|
|
|
|
|
images = torch.clamp( |
|
(torch.stack([inpainting_image, inpainting_mask.repeat(3, 1, 1).to(device)], dim=0) + 1.0) / 2.0, |
|
min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
labels = ['original image', 'inpainting mask'] |
|
wandb_images = [wandb.Image(image, caption=labels[i]) for i, image in enumerate(pil_images)] |
|
|
|
inpainting_image = inpainting_image.unsqueeze(0).repeat(config.training.batch_size, 1, 1, 1) |
|
|
|
inpainting_mask = inpainting_mask.unsqueeze(0).to(device) |
|
inpainting_mask = F.interpolate(inpainting_mask, size=config.dataset.params.resolution // 16, mode='bicubic') |
|
inpainting_mask = inpainting_mask.repeat(config.training.batch_size, 1, 1, 1) |
|
|
|
inpainting_mask[inpainting_mask < 0.5] = 0 |
|
inpainting_mask[inpainting_mask >= 0.5] = 1 |
|
|
|
inpainting_mask = inpainting_mask.reshape(config.training.batch_size, -1) |
|
inpainting_mask = inpainting_mask.to(torch.bool) |
|
|
|
inpainting_image_tokens = vq_model.get_code(inpainting_image) + len(uni_prompting.text_tokenizer) |
|
inpainting_image_tokens[inpainting_mask] = mask_token_id |
|
|
|
input_ids, _ = uni_prompting((prompt, inpainting_image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prompt), inpainting_image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
images = vq_model.decode_code(gen_token_ids) |
|
|
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
|
|
wandb_images.extend([wandb.Image(image, caption=prompt[i]) for i, image in enumerate(pil_images)]) |
|
wandb.log({"generated_images": wandb_images}, step=0) |
|
|
|
elif config.mode == 'extrapolation': |
|
|
|
prompt = [p for p in config.prompt.split(" *** ") if len(p) != 0] |
|
extra_direction = [d for d in config.extra_direction.split(" *** ") if len(d) != 0] |
|
print(prompt, extra_direction) |
|
W = config.dataset.params.resolution // 16 |
|
for id, (prt, direction) in enumerate(zip(prompt, extra_direction)): |
|
prt = [prt] * config.training.batch_size |
|
if id == 0: |
|
extrapolation_image = Image.open(config.image_path).convert("RGB") |
|
extrapolation_image = image_transform(extrapolation_image, |
|
resolution=config.dataset.params.resolution).to(device) |
|
|
|
B, _, _ = extrapolation_image.shape |
|
extrapolation_image = extrapolation_image.unsqueeze(0) |
|
extrapolation_image_tokens = vq_model.get_code(extrapolation_image) + len(uni_prompting.text_tokenizer) |
|
extrapolation_image_tokens = extrapolation_image_tokens.reshape(1, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16) |
|
extrapolation_image_tokens = extrapolation_image_tokens.repeat(config.training.batch_size, 1, 1) |
|
else: |
|
|
|
|
|
extrapolation_image_tokens = gen_token_ids + len(uni_prompting.text_tokenizer) |
|
|
|
image_left_part = extrapolation_image_tokens[:, :, :-(W//2-config.offset)] - len(uni_prompting.text_tokenizer) |
|
image_right_part = extrapolation_image_tokens[:, :, W//2-config.offset:] - len(uni_prompting.text_tokenizer) |
|
image_up_part = extrapolation_image_tokens[:, :-(W//2-config.offset), :] - len(uni_prompting.text_tokenizer) |
|
image_down_part = extrapolation_image_tokens[:, W//2-config.offset:, :] - len(uni_prompting.text_tokenizer) |
|
|
|
if direction in ['left', 'right']: |
|
extrapolation_mask = torch.zeros((config.training.batch_size, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16 // 2 + config.offset), |
|
dtype=torch.int64, device=device) + mask_token_id |
|
else: |
|
extrapolation_mask = torch.zeros((config.training.batch_size, |
|
config.dataset.params.resolution // 16 // 2 + config.offset, |
|
config.dataset.params.resolution // 16), |
|
dtype=torch.int64, device=device) + mask_token_id |
|
|
|
if direction == 'left': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_mask, extrapolation_image_tokens[:, :, :W//2-config.offset]], dim=-1) |
|
elif direction == 'right': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_image_tokens[:, :, -(W//2-config.offset):], extrapolation_mask], dim=-1) |
|
elif direction == 'up': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_mask, extrapolation_image_tokens[:, :W // 2 - config.offset, :]], dim=-2) |
|
else: |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_image_tokens[:, -(W // 2 - config.offset):, :], extrapolation_mask], dim=-2) |
|
|
|
extrapolation_image_tokens = extrapolation_image_tokens.reshape(config.training.batch_size, -1) |
|
|
|
input_ids, _ = uni_prompting((prt, extrapolation_image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prt), extrapolation_image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
gen_token_ids = gen_token_ids.reshape(config.training.batch_size, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16) |
|
if direction == 'left': |
|
gen_token_ids = torch.cat([gen_token_ids, image_right_part], dim=-1) |
|
elif direction == 'right': |
|
gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-1) |
|
elif direction == 'up': |
|
gen_token_ids = torch.cat([gen_token_ids, image_down_part], dim=-2) |
|
else: |
|
gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-2) |
|
|
|
_, h, w = gen_token_ids.shape |
|
gen_token_ids = gen_token_ids.reshape(config.training.batch_size, -1) |
|
images = vq_model.decode_code(gen_token_ids, shape=(h, w)) |
|
|
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
wandb_images = [wandb.Image(image, caption=' '.join(prompt)) for i, image in enumerate(pil_images)] |
|
wandb.log({"generated_images": wandb_images}, step=0) |
|
|
|
elif config.mode == 't2i': |
|
with open(config.dataset.params.validation_prompts_file, "r") as f: |
|
validation_prompts = f.read().splitlines() |
|
|
|
for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)): |
|
prompts = validation_prompts[step:step + config.training.batch_size] |
|
|
|
image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens), |
|
dtype=torch.long, device=device) * mask_token_id |
|
|
|
input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
images = vq_model.decode_code(gen_token_ids) |
|
|
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)] |
|
wandb.log({"generated_images": wandb_images}, step=step) |
|
|