File size: 23,407 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import numpy as np
import gradio as gr
import torch
from PIL import Image
from omegaconf import OmegaConf
from transformers import AutoTokenizer
import torch.nn.functional as F
from transformers import CLIPImageProcessor

import sys
sys.path.insert(0, ".")
from training import conversation as conversation_lib
from prompting_utils import UniversalPrompting, create_attention_mask_predict_next, create_attention_mask_for_mmu
from training_utils import image_transform
from models import Showo, MAGVITv2, get_mask_chedule, CLIPVisionTower

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
conversation_lib.default_conversation = conversation_lib.conv_templates["phi1.5"]
SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. " \
                "The assistant gives helpful, detailed, and polite answers to the user's questions."
SYSTEM_PROMPT_LEN = 28


config = OmegaConf.load("configs/showo_demo.yaml")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")

uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                   special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>",
                                                   "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                   ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)

vq_model = MAGVITv2()
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()

model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()
mask_token_id = model.config.mask_token_id


def text_to_image_generation(input_text, guidance_scale, generation_timesteps):
    prompts = [input_text]
    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens),
                              dtype=torch.long, device=device) * mask_token_id

    input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen')

    if config.training.guidance_scale > 0:
        uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen')
        attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
    else:
        attention_mask = create_attention_mask_predict_next(input_ids,
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
        uncond_input_ids = None

    if config.get("mask_schedule", None) is not None:
        schedule = config.mask_schedule.schedule
        args = config.mask_schedule.get("params", {})
        mask_schedule = get_mask_chedule(schedule, **args)
    else:
        mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

    with torch.no_grad():
        gen_token_ids = model.t2i_generate(
            input_ids=input_ids,
            uncond_input_ids=uncond_input_ids,
            attention_mask=attention_mask,
            guidance_scale=config.training.guidance_scale,
            temperature=config.training.get("generation_temperature", 1.0),
            timesteps=config.training.generation_timesteps,
            noise_schedule=mask_schedule,
            noise_type=config.training.get("noise_type", "mask"),
            seq_len=config.model.showo.num_vq_tokens,
            uni_prompting=uni_prompting,
            config=config,
        )

    gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
    images = vq_model.decode_code(gen_token_ids)

    images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
    images *= 255.0
    images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)

    return images[0]


def text_guided_inpainting(input_text, inpainting_image, inpainting_mask, guidance_scale, generation_timesteps):
    prompt = [input_text]

    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    inpainting_image = image_transform(inpainting_image, resolution=config.dataset.params.resolution).to(device)
    inpainting_mask = image_transform(inpainting_mask, resolution=config.dataset.params.resolution, normalize=False)

    inpainting_image = inpainting_image.unsqueeze(0).repeat(config.training.batch_size, 1, 1, 1)

    inpainting_mask = inpainting_mask.unsqueeze(0).to(device)
    inpainting_mask = F.interpolate(inpainting_mask, size=config.dataset.params.resolution // 16, mode='bicubic')
    inpainting_mask = inpainting_mask.repeat(config.training.batch_size, 1, 1, 1)

    inpainting_mask[inpainting_mask < 0.5] = 0
    inpainting_mask[inpainting_mask >= 0.5] = 1

    inpainting_mask = inpainting_mask.reshape(config.training.batch_size, -1)
    inpainting_mask = inpainting_mask.to(torch.bool)

    inpainting_image_tokens = vq_model.get_code(inpainting_image) + len(uni_prompting.text_tokenizer)
    inpainting_image_tokens[inpainting_mask] = mask_token_id

    input_ids, _ = uni_prompting((prompt, inpainting_image_tokens), 't2i_gen')

    if config.training.guidance_scale > 0:
        uncond_input_ids, _ = uni_prompting(([''] * len(prompt), inpainting_image_tokens), 't2i_gen')
        attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
    else:
        attention_mask = create_attention_mask_predict_next(input_ids,
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
        uncond_input_ids = None

    if config.get("mask_schedule", None) is not None:
        schedule = config.mask_schedule.schedule
        args = config.mask_schedule.get("params", {})
        mask_schedule = get_mask_chedule(schedule, **args)
    else:
        mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

    with torch.no_grad():
        gen_token_ids = model.t2i_generate(
            input_ids=input_ids,
            uncond_input_ids=uncond_input_ids,
            attention_mask=attention_mask,
            guidance_scale=config.training.guidance_scale,
            temperature=config.training.get("generation_temperature", 1.0),
            timesteps=config.training.generation_timesteps,
            noise_schedule=mask_schedule,
            noise_type=config.training.get("noise_type", "mask"),
            seq_len=config.model.showo.num_vq_tokens,
            uni_prompting=uni_prompting,
            config=config,
        )

    gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
    images = vq_model.decode_code(gen_token_ids)

    images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
    images *= 255.0
    images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)

    return images[0]


def text_guided_extrapolation(input_img, input_text, left_ext, right_ext, guidance_scale, generation_timesteps):
    config.offset = 0
    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    extra_direction = ['right'] * int(right_ext) + ['left'] * int(left_ext)
    prompt = [input_text] * len(extra_direction)
    W = config.dataset.params.resolution // 16
    for id, (prt, direction) in enumerate(zip(prompt, extra_direction)):
        prt = [prt] * config.training.batch_size
        if id == 0:
            # extrapolation_image = Image.open(config.image_path).convert("RGB")
            extrapolation_image = input_img
            extrapolation_image = image_transform(extrapolation_image,
                                                  resolution=config.dataset.params.resolution).to(device)

            B, _, _ = extrapolation_image.shape
            extrapolation_image = extrapolation_image.unsqueeze(0)
            extrapolation_image_tokens = vq_model.get_code(extrapolation_image) + len(uni_prompting.text_tokenizer)
            extrapolation_image_tokens = extrapolation_image_tokens.reshape(1,
                                                                            config.dataset.params.resolution // 16,
                                                                            config.dataset.params.resolution // 16)
            extrapolation_image_tokens = extrapolation_image_tokens.repeat(config.training.batch_size, 1, 1)
        else:

            extrapolation_image_tokens = gen_token_ids + len(uni_prompting.text_tokenizer)

        image_left_part = extrapolation_image_tokens[:, :, :-(W // 2 - config.offset)] - len(
            uni_prompting.text_tokenizer)
        image_right_part = extrapolation_image_tokens[:, :, W // 2 - config.offset:] - len(uni_prompting.text_tokenizer)
        image_up_part = extrapolation_image_tokens[:, :-(W // 2 - config.offset), :] - len(uni_prompting.text_tokenizer)
        image_down_part = extrapolation_image_tokens[:, W // 2 - config.offset:, :] - len(uni_prompting.text_tokenizer)

        if direction in ['left', 'right']:
            extrapolation_mask = torch.zeros((config.training.batch_size,
                                              config.dataset.params.resolution // 16,
                                              config.dataset.params.resolution // 16 // 2 + config.offset),
                                             dtype=torch.int64, device=device) + mask_token_id
        else:
            extrapolation_mask = torch.zeros((config.training.batch_size,
                                              config.dataset.params.resolution // 16 // 2 + config.offset,
                                              config.dataset.params.resolution // 16),
                                             dtype=torch.int64, device=device) + mask_token_id

        if direction == 'left':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_mask, extrapolation_image_tokens[:, :, :W // 2 - config.offset]], dim=-1)
        elif direction == 'right':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_image_tokens[:, :, -(W // 2 - config.offset):], extrapolation_mask], dim=-1)
        elif direction == 'up':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_mask, extrapolation_image_tokens[:, :W // 2 - config.offset, :]], dim=-2)
        else:
            extrapolation_image_tokens = torch.cat(
                [extrapolation_image_tokens[:, -(W // 2 - config.offset):, :], extrapolation_mask], dim=-2)

        extrapolation_image_tokens = extrapolation_image_tokens.reshape(config.training.batch_size, -1)

        input_ids, _ = uni_prompting((prt, extrapolation_image_tokens), 't2i_gen')

        if config.training.guidance_scale > 0:
            uncond_input_ids, _ = uni_prompting(([''] * len(prt), extrapolation_image_tokens), 't2i_gen')
            attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                                pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                                soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                                eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                                rm_pad_in_image=True)
        else:
            attention_mask = create_attention_mask_predict_next(input_ids,
                                                                pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                                soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                                eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                                rm_pad_in_image=True)
            uncond_input_ids = None

        if config.get("mask_schedule", None) is not None:
            schedule = config.mask_schedule.schedule
            args = config.mask_schedule.get("params", {})
            mask_schedule = get_mask_chedule(schedule, **args)
        else:
            mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

        with torch.no_grad():
            gen_token_ids = model.t2i_generate(
                input_ids=input_ids,
                uncond_input_ids=uncond_input_ids,
                attention_mask=attention_mask,
                guidance_scale=config.training.guidance_scale,
                temperature=config.training.get("generation_temperature", 1.0),
                timesteps=config.training.generation_timesteps,
                noise_schedule=mask_schedule,
                noise_type=config.training.get("noise_type", "mask"),
                seq_len=config.model.showo.num_vq_tokens,
                uni_prompting=uni_prompting,
                config=config,
            )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
        gen_token_ids = gen_token_ids.reshape(config.training.batch_size,
                                              config.dataset.params.resolution // 16,
                                              config.dataset.params.resolution // 16)
        if direction == 'left':
            gen_token_ids = torch.cat([gen_token_ids, image_right_part], dim=-1)
        elif direction == 'right':
            gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-1)
        elif direction == 'up':
            gen_token_ids = torch.cat([gen_token_ids, image_down_part], dim=-2)
        else:
            gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-2)

    _, h, w = gen_token_ids.shape
    gen_token_ids = gen_token_ids.reshape(config.training.batch_size, -1)
    images = vq_model.decode_code(gen_token_ids, shape=(h, w))

    images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
    images *= 255.0
    images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)

    return images[0]


def multimodal_understanding(input_img, input_text, chat_history):
    top_k = 1  # retain only the top_k most likely tokens, clamp others to have 0 probability

    image_ori = input_img
    image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
    image = image.unsqueeze(0)
    image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)

    question = input_text
    input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[
        'input_ids']
    input_ids = torch.tensor(input_ids).to(device)

    input_ids = torch.cat([
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
        image_tokens,
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
        input_ids
    ], dim=1).long()

    attention_mask = create_attention_mask_for_mmu(input_ids.to(device),
                                                   eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']))

    cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask,
                                        max_new_tokens=100, top_k=top_k,
                                        eot_token=uni_prompting.sptids_dict['<|eot|>'])

    cont_toks_list = torch.stack(cont_toks_list).squeeze()[None]

    output_text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True)

    output_text = output_text[0].strip()

    chat_history.append((input_text, output_text))

    return "", chat_history


with gr.Blocks() as demo:
    gr.HTML("""
            <h1 class="display-2 fw-bold title">
              <a style="color: #70a8dc;">S</a><a style="color: #6fb051;">h</a><a style="color: #e06766;">o</a><a style="color: #f7b26b;">w</a>-o
            </h1>
            <p>This is the official Gradio demo for the Show-o model, a unified model that can do multimodal understanding and generation.</p>

            <strong>Paper:</strong> <a href="https://arxiv.org/abs/2408.12528" target="_blank">Show-o: One Single Transformer To Unify Multimodal Understanding and Generation </a>
            <br/>
            <strong>Project Website:</strong> <a href="https://showlab.github.io/Show-o/" target="_blank">Show-o Website</a>
            <br/>
            <strong>Code and Models:</strong> <a href="https://github.com/showlab/Show-o" target="_blank">GitHub</a>
            <br/>
            <br/>
        """)

    with gr.Row():
        with gr.Column():
            text_prompt_t2i = gr.Textbox(
                label="Text prompt",
                lines=2,
                placeholder="Input the text prompt here for image generation."
            )
            guidance_scale_t2i = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_t2i = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=18
            )
        generated_img_t2i = gr.Image(
            label="Output image"
        )
    submit_btn_t2i = gr.Button("Generate: Text-to-image")
    submit_btn_t2i.click(text_to_image_generation,
                         [text_prompt_t2i, guidance_scale_t2i, generation_timesteps_t2i],
                         [generated_img_t2i])

    with gr.Row():
        inpainting_input_img = gr.Image(
            label="Input image",
            type="pil",
        )
        inpainting_input_mask = gr.Image(
            label="Inpainting mask",
            image_mode="L",
            type="pil",
        )

        with gr.Column():
            text_prompt_inpainting = gr.Textbox(
                label="Text prompt",
                lines=2,
                placeholder="Input the text prompt here for image inpainting."
            )
            guidance_scale_inpainting = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_inpainting = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=16
            )
        generated_img_inpainting = gr.Image(
            label="Output image"
        )
    submit_btn_inpainting = gr.Button("Generate: Text-guided Inpainting")
    submit_btn_inpainting.click(text_guided_inpainting,
                                [text_prompt_inpainting, inpainting_input_img, inpainting_input_mask,
                                 guidance_scale_inpainting, generation_timesteps_inpainting],
                                [generated_img_inpainting])

    with gr.Row():
        extra_input_img = gr.Image(
            label="Input image",
            type="pil",
            image_mode="RGB",
        )

        with gr.Column():
            text_prompt_extrapolation = gr.Textbox(
                label="Text prompt",
                lines=1,
                placeholder="Input the text prompt here for image extrapolation."
            )
            guidance_scale_extrapolation = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_extrapolation = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=16
            )
            left_extrapolation = gr.Slider(
                label="left extrapolation",
                minimum=0,
                maximum=5,
                step=1,
                value=1
            )
            right_extrapolation = gr.Slider(
                label="right extrapolation",
                minimum=0,
                maximum=5,
                step=1,
                value=1
            )
        generated_img_extrapolation = gr.Image(
            label="Output image"
        )
    submit_btn_inpainting = gr.Button("Generate: Text-guided Extrapolation")
    submit_btn_inpainting.click(text_guided_extrapolation,
                                [extra_input_img, text_prompt_extrapolation, left_extrapolation, right_extrapolation,
                                 guidance_scale_extrapolation, generation_timesteps_extrapolation],
                                [generated_img_extrapolation])

    with gr.Row():
        with gr.Row():
            chat_input_img = gr.Image(
                label="Input image",
                type="pil",
                image_mode="RGB",
            )
        with gr.Column():
            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Press Enter to send a message for chat")
            clear = gr.ClearButton([msg, chatbot])
    msg.submit(multimodal_understanding, [chat_input_img, msg, chatbot], [msg, chatbot])

demo.launch()