InternLM_Lagent / examples /agent_api_web_demo.py
DESKTOP-P3A1PV5\inShine
Add application file
a5ab2ca
import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch, WeatherQuery
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI
class SessionState:
"""管理会话状态的类。"""
def init_state(self):
"""初始化会话状态变量。"""
st.session_state['assistant'] = [] # 助手消息历史
st.session_state['user'] = [] # 用户消息历史
# 初始化插件列表
action_list = [
ArxivSearch(),
WeatherQuery()
]
st.session_state['plugin_map'] = {action.name: action for action in action_list}
st.session_state['model_map'] = {} # 存储模型实例
st.session_state['model_selected'] = None # 当前选定模型
st.session_state['plugin_actions'] = set() # 当前激活插件
st.session_state['history'] = [] # 聊天历史
st.session_state['api_base'] = None # 初始化API base地址
def clear_state(self):
"""清除当前会话状态。"""
st.session_state['assistant'] = []
st.session_state['user'] = []
st.session_state['model_selected'] = None
class StreamlitUI:
"""管理 Streamlit 界面的类。"""
def __init__(self, session_state: SessionState):
self.session_state = session_state
self.plugin_action = [] # 当前选定的插件
# 初始化提示词
self.meta_prompt = META_CN
self.plugin_prompt = PLUGIN_CN
self.init_streamlit()
def init_streamlit(self):
"""初始化 Streamlit 的 UI 设置。"""
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png'
)
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
def setup_sidebar(self):
"""设置侧边栏,选择模型和插件。"""
# 模型名称和 API Base 输入框
model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
# ================================== 硅基流动的API ==================================
# 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
# api_base = st.sidebar.text_input(
# 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
# )
# ================================== 浦语官方的API ==================================
api_base = st.sidebar.text_input(
'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
)
# ==================================================================================
# 插件选择
plugin_name = st.sidebar.multiselect(
'插件选择',
options=list(st.session_state['plugin_map'].keys()),
default=[],
)
# 根据选择的插件生成插件操作列表
self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
# 动态生成插件提示
if self.plugin_action:
self.plugin_prompt = get_plugin_prompt(self.plugin_action)
# 清空对话按钮
if st.sidebar.button('清空对话', key='clear'):
self.session_state.clear_state()
return model_name, api_base, self.plugin_action
def initialize_chatbot(self, model_name, api_base, plugin_action):
"""初始化 GPTAPI 实例作为 chatbot。"""
token = os.getenv("INTERNLM_API_KEY")
if not token:
st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
st.stop() # 停止运行应用
# 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
meta_prompt = [
{"role": "system", "content": self.meta_prompt, "api_role": "system"},
{"role": "user", "content": "", "api_role": "user"},
{"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
{"role": "environment", "content": "", "api_role": "environment"}
]
api_model = GPTAPI(
model_type=model_name,
api_base=api_base,
key=token, # 从环境变量中获取授权令牌
meta_template=meta_prompt,
max_new_tokens=512,
temperature=0.8,
top_p=0.9
)
return api_model
def render_user(self, prompt: str):
"""渲染用户输入内容。"""
with st.chat_message('user'):
st.markdown(prompt)
def render_assistant(self, agent_return):
"""渲染助手响应内容。"""
with st.chat_message('assistant'):
content = getattr(agent_return, "content", str(agent_return))
st.markdown(content if isinstance(content, str) else str(content))
def main():
"""主函数,运行 Streamlit 应用。"""
if 'ui' not in st.session_state:
session_state = SessionState()
session_state.init_state()
st.session_state['ui'] = StreamlitUI(session_state)
else:
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png'
)
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
# 设置侧边栏并获取模型和插件信息
model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
if (
'chatbot' not in st.session_state or
model_name != st.session_state['chatbot'].model_type or
'last_plugin_action' not in st.session_state or
plugin_action != st.session_state['last_plugin_action'] or
api_base != st.session_state['api_base']
):
# 更新 Chatbot
st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
st.session_state['api_base'] = api_base # 更新 API Base 地址
# 初始化 AgentForInternLM
st.session_state['agent'] = AgentForInternLM(
llm=st.session_state['chatbot'],
plugins=plugins,
output_format=dict(
type=PluginParser,
template=PLUGIN_CN,
prompt=get_plugin_prompt(plugin_action)
)
)
# 清空对话历史
st.session_state['session_history'] = []
if 'agent' not in st.session_state:
st.session_state['agent'] = None
agent = st.session_state['agent']
for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
st.session_state['ui'].render_user(prompt)
st.session_state['ui'].render_assistant(agent_return)
# 处理用户输入
if user_input := st.chat_input(''):
st.session_state['ui'].render_user(user_input)
# 调用模型时确保侧边栏的系统提示词和插件提示词生效
res = agent(user_input, session_id=0)
st.session_state['ui'].render_assistant(res)
# 更新会话状态
st.session_state['user'].append(user_input)
st.session_state['assistant'].append(copy.deepcopy(res))
st.session_state['last_status'] = None
if __name__ == '__main__':
main()