Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import numpy.random as npr | |
import copy | |
from lib.model_zoo.common.get_model import get_model, register | |
from lib.model_zoo.common import utils | |
from .optimus_models.tokenization_gpt2 import GPT2Tokenizer | |
symbol = 'optimus' | |
class optimus_vae(nn.Module): | |
"""VAE with normal prior""" | |
def __init__(self, encoder, decoder, tokenizer_encoder, tokenizer_decoder, args): # | |
super().__init__() | |
self.encoder = encoder if isinstance(encoder, nn.Module) else get_model()(encoder) | |
self.decoder = decoder if isinstance(decoder, nn.Module) else get_model()(decoder) | |
self.tokenizer_encoder = tokenizer_encoder \ | |
if isinstance(tokenizer_encoder, nn.Module) \ | |
else get_model()(tokenizer_encoder, verbose=False) | |
self.tokenizer_decoder = tokenizer_decoder \ | |
if isinstance(tokenizer_decoder, nn.Module) \ | |
else get_model()(tokenizer_decoder, verbose=False) | |
gpt2_special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'} | |
if isinstance(self.tokenizer_encoder, GPT2Tokenizer): | |
self.tokenizer_encoder.add_special_tokens(gpt2_special_tokens_dict) | |
if isinstance(self.tokenizer_decoder, GPT2Tokenizer): | |
self.tokenizer_decoder.add_special_tokens(gpt2_special_tokens_dict) | |
self.args = args | |
self.nz = args.latent_size | |
self.eos_token_id = self.tokenizer_decoder.convert_tokens_to_ids( | |
[self.tokenizer_decoder.eos_token])[0] | |
self.pad_token_id = self.tokenizer_decoder.convert_tokens_to_ids( | |
[self.tokenizer_decoder.pad_token])[0] | |
# connector: from Bert hidden units to the latent space | |
# self.linear = nn.Linear(args.nz, 2 * args.nz, bias=False) | |
# Standard Normal prior | |
loc = torch.zeros(self.nz) | |
scale = torch.ones(self.nz) | |
self.prior = torch.distributions.normal.Normal(loc, scale) | |
def connect(self, bert_fea, nsamples=1): | |
""" | |
Returns: Tensor1, Tensor2 | |
Tensor1: the tensor latent z with shape [batch, nsamples, nz] | |
Tensor2: the tenor of KL for each x with shape [batch] | |
""" | |
# (batch_size, nz) | |
mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
# pdb.set_trace() | |
# mean, logvar = mean.squeeze(0), logvar.squeeze(0) | |
# (batch, nsamples, nz) | |
z = self.reparameterize(mean, logvar, nsamples) | |
KL = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1) | |
return z, KL | |
def connect_deterministic(self, bert_fea, nsamples=1): | |
""" | |
Returns: Tensor1, Tensor2 | |
Tensor1: the tensor latent z with shape [batch, nsamples, nz] | |
Tensor2: the tenor of KL for each x with shape [batch] | |
""" | |
# (batch_size, nz) | |
mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
# pdb.set_trace() | |
# mean, logvar = mean.squeeze(0), logvar.squeeze(0) | |
logvar.fill_(.0) | |
# (batch, nsamples, nz) | |
z = self.reparameterize(mean, logvar, nsamples) | |
KL = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1) | |
return z, KL | |
def reparameterize(self, mu, logvar, nsamples=1): | |
"""sample from posterior Gaussian family | |
Args: | |
mu: Tensor | |
Mean of gaussian distribution with shape (batch, nz) | |
logvar: Tensor | |
logvar of gaussian distibution with shape (batch, nz) | |
Returns: Tensor | |
Sampled z with shape (batch, nsamples, nz) | |
""" | |
batch_size, nz = mu.size() | |
std = logvar.mul(0.5).exp() | |
mu_expd = mu.unsqueeze(1).expand(batch_size, nsamples, nz) | |
std_expd = std.unsqueeze(1).expand(batch_size, nsamples, nz) | |
eps = torch.zeros_like(std_expd).normal_() | |
return mu_expd + torch.mul(eps, std_expd) | |
def forward(self, inputs, labels): | |
# pdb.set_trace() | |
attention_mask=(inputs > 0).float() | |
# logger.info(inputs) | |
# logger.info(attention_mask) | |
# logger.info(labels) | |
reconstrution_mask=(labels != 50257).float() # 50257 is the padding token for GPT2 | |
sent_length = torch.sum(reconstrution_mask, dim=1) | |
outputs = self.encoder(inputs, attention_mask) | |
pooled_hidden_fea = outputs[1] # model outputs are always tuple in pytorch-transformers (see doc) | |
if self.args.fb_mode==0: | |
# Connect hidden feature to the latent space | |
latent_z, loss_kl = self.connect(pooled_hidden_fea) | |
latent_z = latent_z.squeeze(1) | |
# Decoding | |
outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id) | |
loss_rec = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc) | |
elif self.args.fb_mode==1: | |
# Connect hidden feature to the latent space | |
mu, logvar = self.encoder.linear(pooled_hidden_fea).chunk(2, -1) | |
latent_z = self.reparameterize(mu, logvar, nsamples=1) | |
latent_z = latent_z.squeeze(1) | |
loss_kl = 0.5 * (mu.pow(2) + logvar.exp() - logvar - 1) | |
kl_mask = (loss_kl > self.args.dim_target_kl).float() | |
loss_kl = (kl_mask * loss_kl).sum(dim=1) | |
# pdb.set_trace() | |
# past = self.decoder.linear(latent_z) | |
# Decoding | |
outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id) | |
loss_rec = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc) | |
elif self.args.fb_mode==2: | |
# Connect hidden feature to the latent space | |
latent_z, loss_kl = self.connect_deterministic(pooled_hidden_fea) | |
latent_z = latent_z.squeeze(1) | |
# past = self.decoder.linear(latent_z) | |
# Decoding | |
outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id) | |
loss_rec = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc) | |
# pdb.set_trace() | |
if self.args.length_weighted_loss: | |
loss = loss_rec / sent_length + self.args.beta * loss_kl | |
else: | |
loss = loss_rec + self.args.beta * loss_kl | |
return loss_rec, loss_kl, loss | |
def encoder_sample(self, bert_fea, nsamples): | |
"""sampling from the encoder | |
Returns: Tensor1 | |
Tensor1: the tensor latent z with shape [batch, nsamples, nz] | |
""" | |
# (batch_size, nz) | |
mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
mu, logvar = mu.squeeze(0), logvar.squeeze(0) | |
# (batch, nsamples, nz) | |
z = self.reparameterize(mu, logvar, nsamples) | |
return z, (mu, logvar) | |
def encode_stats(self, x): | |
""" | |
Returns: Tensor1, Tensor2 | |
Tensor1: the mean of latent z with shape [batch, nz] | |
Tensor2: the logvar of latent z with shape [batch, nz] | |
""" | |
return self.encoder.encode_stats(x) | |
def decode(self, z, strategy, K=10): | |
"""generate samples from z given strategy | |
Args: | |
z: [batch, nsamples, nz] | |
strategy: "beam" or "greedy" or "sample" | |
K: the beam width parameter | |
Returns: List1 | |
List1: a list of decoded word sequence | |
""" | |
if strategy == "beam": | |
return self.decoder.beam_search_decode(z, K) | |
elif strategy == "greedy": | |
return self.decoder.greedy_decode(z) | |
elif strategy == "sample": | |
return self.decoder.sample_decode(z) | |
else: | |
raise ValueError("the decoding strategy is not supported") | |
def reconstruct(self, x, decoding_strategy="greedy", K=5): | |
"""reconstruct from input x | |
Args: | |
x: (batch, *) | |
decoding_strategy: "beam" or "greedy" or "sample" | |
K: the beam width parameter | |
Returns: List1 | |
List1: a list of decoded word sequence | |
""" | |
z = self.sample_from_inference(x).squeeze(1) | |
return self.decode(z, decoding_strategy, K) | |
def log_probability(self, x, z): | |
"""Cross Entropy in the language case | |
Args: | |
x: (batch_size, seq_len) | |
z: (batch_size, n_sample, nz) | |
Returns: | |
log_p: (batch_size, n_sample). | |
log_p(x|z) across different x and z | |
""" | |
outputs = self.decoder(input_ids=x, past=z, labels=x, label_ignore=self.pad_token_id) | |
loss_rec = outputs[0] | |
return -loss_rec | |
def loss_iw(self, x0, x1, nsamples=50, ns=1): | |
""" | |
Args: | |
x: if the data is constant-length, x is the data tensor with | |
shape (batch, *). Otherwise x is a tuple that contains | |
the data tensor and length list | |
Returns: Tensor1, Tensor2, Tensor3 | |
Tensor1: total loss [batch] | |
Tensor2: reconstruction loss shape [batch] | |
Tensor3: KL loss shape [batch] | |
""" | |
# encoding into bert features | |
bert_fea = self.encoder(x0)[1] | |
# (batch_size, nz) | |
mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
################## | |
# compute KL | |
################## | |
# pdb.set_trace() | |
KL = 0.5 * (mu.pow(2) + logvar.exp() - logvar - 1).sum(dim=1) | |
# mu, logvar = mu.squeeze(0), logvar.squeeze(0) | |
ll_tmp, rc_tmp = [], [] | |
for _ in range(int(nsamples / ns)): | |
# (batch, nsamples, nz) | |
z = self.reparameterize(mu, logvar, ns) | |
# past = self.decoder.linear(z) | |
past = z | |
# [batch, nsamples] | |
log_prior = self.eval_prior_dist(z) | |
log_gen = self.eval_cond_ll(x1, past) | |
log_infer = self.eval_inference_dist(z, (mu, logvar)) | |
# pdb.set_trace() | |
log_gen = log_gen.unsqueeze(0).contiguous().view(z.shape[0],-1) | |
# pdb.set_trace() | |
rc_tmp.append(log_gen) | |
ll_tmp.append(log_gen + log_prior - log_infer) | |
log_prob_iw = log_sum_exp(torch.cat(ll_tmp, dim=-1), dim=-1) - math.log(nsamples) | |
log_gen_iw = torch.mean(torch.cat(rc_tmp, dim=-1), dim=-1) | |
return log_prob_iw, log_gen_iw , KL | |
def nll_iw(self, x0, x1, nsamples, ns=1): | |
"""compute the importance weighting estimate of the log-likelihood | |
Args: | |
x0, x1: two different tokenization results of x, where x is the data tensor with shape (batch, *). | |
nsamples: Int | |
the number of samples required to estimate marginal data likelihood | |
Returns: Tensor1 | |
Tensor1: the estimate of log p(x), shape [batch] | |
""" | |
# compute iw every ns samples to address the memory issue | |
# nsamples = 500, ns = 100 | |
# nsamples = 500, ns = 10 | |
# TODO: note that x is forwarded twice in self.encoder.sample(x, ns) and self.eval_inference_dist(x, z, param) | |
#. this problem is to be solved in order to speed up | |
tmp = [] | |
for _ in range(int(nsamples / ns)): | |
# [batch, ns, nz] | |
# Chunyuan: | |
# encoding into bert features | |
pooled_hidden_fea = self.encoder(x0)[1] | |
# param is the parameters required to evaluate q(z|x) | |
z, param = self.encoder_sample(pooled_hidden_fea, ns) | |
# [batch, ns] | |
log_comp_ll = self.eval_complete_ll(x1, z) | |
log_infer_ll = self.eval_inference_dist(z, param) | |
tmp.append(log_comp_ll - log_infer_ll) | |
ll_iw = log_sum_exp(torch.cat(tmp, dim=-1), dim=-1) - math.log(nsamples) | |
return ll_iw | |
def KL(self, x): | |
_, KL = self.encode(x, 1) | |
return KL | |
def eval_prior_dist(self, zrange): | |
"""perform grid search to calculate the true posterior | |
Args: | |
zrange: tensor | |
different z points that will be evaluated, with | |
shape (k^2, nz), where k=(zmax - zmin)/space | |
""" | |
# (k^2) | |
return self.prior.log_prob(zrange).sum(dim=-1) | |
def eval_complete_ll(self, x, z): | |
"""compute log p(z,x) | |
Args: | |
x: Tensor | |
input with shape [batch, seq_len] | |
z: Tensor | |
evaluation points with shape [batch, nsamples, nz] | |
Returns: Tensor1 | |
Tensor1: log p(z,x) Tensor with shape [batch, nsamples] | |
""" | |
# [batch, nsamples] | |
log_prior = self.eval_prior_dist(z) | |
log_gen = self.eval_cond_ll(x, z) | |
return log_prior + log_gen | |
def eval_cond_ll(self, x, z): | |
"""compute log p(x|z) | |
""" | |
x_shape = list(x.size()) | |
z_shape = list(z.size()) | |
if len(z_shape) == 3: | |
x = x.unsqueeze(1).repeat(1, z_shape[1], 1).contiguous().view(x_shape[0]*z_shape[1], x_shape[-1]) | |
z = z.contiguous().view(x_shape[0]*z_shape[1], z_shape[-1]) | |
return self.log_probability(x, z) | |
def eval_log_model_posterior(self, x, grid_z): | |
"""perform grid search to calculate the true posterior | |
this function computes p(z|x) | |
Args: | |
grid_z: tensor | |
different z points that will be evaluated, with | |
shape (k^2, nz), where k=(zmax - zmin)/pace | |
Returns: Tensor | |
Tensor: the log posterior distribution log p(z|x) with | |
shape [batch_size, K^2] | |
""" | |
try: | |
batch_size = x.size(0) | |
except: | |
batch_size = x[0].size(0) | |
# (batch_size, k^2, nz) | |
grid_z = grid_z.unsqueeze(0).expand(batch_size, *grid_z.size()).contiguous() | |
# (batch_size, k^2) | |
log_comp = self.eval_complete_ll(x, grid_z) | |
# normalize to posterior | |
log_posterior = log_comp - log_sum_exp(log_comp, dim=1, keepdim=True) | |
return log_posterior | |
def sample_from_inference(self, x, nsamples=1): | |
"""perform sampling from inference net | |
Returns: Tensor | |
Tensor: samples from infernece nets with | |
shape (batch_size, nsamples, nz) | |
""" | |
z, _ = self.encoder.sample(x, nsamples) | |
return z | |
def sample_from_posterior(self, x, nsamples): | |
"""perform MH sampling from model posterior | |
Returns: Tensor | |
Tensor: samples from model posterior with | |
shape (batch_size, nsamples, nz) | |
""" | |
# use the samples from inference net as initial points | |
# for MCMC sampling. [batch_size, nsamples, nz] | |
cur = self.encoder.sample_from_inference(x, 1) | |
cur_ll = self.eval_complete_ll(x, cur) | |
total_iter = self.args.mh_burn_in + nsamples * self.args.mh_thin | |
samples = [] | |
for iter_ in range(total_iter): | |
next = torch.normal(mean=cur, | |
std=cur.new_full(size=cur.size(), fill_value=self.args.mh_std)) | |
# [batch_size, 1] | |
next_ll = self.eval_complete_ll(x, next) | |
ratio = next_ll - cur_ll | |
accept_prob = torch.min(ratio.exp(), ratio.new_ones(ratio.size())) | |
uniform_t = accept_prob.new_empty(accept_prob.size()).uniform_() | |
# [batch_size, 1] | |
mask = (uniform_t < accept_prob).float() | |
mask_ = mask.unsqueeze(2) | |
cur = mask_ * next + (1 - mask_) * cur | |
cur_ll = mask * next_ll + (1 - mask) * cur_ll | |
if iter_ >= self.args.mh_burn_in and (iter_ - self.args.mh_burn_in) % self.args.mh_thin == 0: | |
samples.append(cur.unsqueeze(1)) | |
return torch.cat(samples, dim=1) | |
def calc_model_posterior_mean(self, x, grid_z): | |
"""compute the mean value of model posterior, i.e. E_{z ~ p(z|x)}[z] | |
Args: | |
grid_z: different z points that will be evaluated, with | |
shape (k^2, nz), where k=(zmax - zmin)/pace | |
x: [batch, *] | |
Returns: Tensor1 | |
Tensor1: the mean value tensor with shape [batch, nz] | |
""" | |
# [batch, K^2] | |
log_posterior = self.eval_log_model_posterior(x, grid_z) | |
posterior = log_posterior.exp() | |
# [batch, nz] | |
return torch.mul(posterior.unsqueeze(2), grid_z.unsqueeze(0)).sum(1) | |
def calc_infer_mean(self, x): | |
""" | |
Returns: Tensor1 | |
Tensor1: the mean of inference distribution, with shape [batch, nz] | |
""" | |
mean, logvar = self.encoder.forward(x) | |
return mean | |
def eval_inference_dist(self, z, param): | |
"""this function computes log q(z | x) | |
Args: | |
z: tensor | |
different z points that will be evaluated, with | |
shape [batch, nsamples, nz] | |
Returns: Tensor1 | |
Tensor1: log q(z|x) with shape [batch, nsamples] | |
""" | |
nz = z.size(2) | |
mu, logvar = param | |
# (batch_size, 1, nz) | |
mu, logvar = mu.unsqueeze(1), logvar.unsqueeze(1) | |
var = logvar.exp() | |
# (batch_size, nsamples, nz) | |
dev = z - mu | |
# (batch_size, nsamples) | |
log_density = -0.5 * ((dev ** 2) / var).sum(dim=-1) - \ | |
0.5 * (nz * math.log(2 * math.pi) + logvar.sum(-1)) | |
return log_density | |
def calc_mi(self, test_data_batch, args): | |
# calc_mi_v3 | |
import math | |
from modules.utils import log_sum_exp | |
mi = 0 | |
num_examples = 0 | |
mu_batch_list, logvar_batch_list = [], [] | |
neg_entropy = 0. | |
for batch_data in test_data_batch: | |
x0, _, _ = batch_data | |
x0 = x0.to(args.device) | |
# encoding into bert features | |
bert_fea = self.encoder(x0)[1] | |
(batch_size, nz) | |
mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
x_batch, nz = mu.size() | |
#print(x_batch, end=' ') | |
num_examples += x_batch | |
# E_{q(z|x)}log(q(z|x)) = -0.5*nz*log(2*\pi) - 0.5*(1+logvar).sum(-1) | |
neg_entropy += (-0.5 * nz * math.log(2 * math.pi)- 0.5 * (1 + logvar).sum(-1)).sum().item() | |
mu_batch_list += [mu.cpu()] | |
logvar_batch_list += [logvar.cpu()] | |
pdb.set_trace() | |
neg_entropy = neg_entropy / num_examples | |
##print() | |
num_examples = 0 | |
log_qz = 0. | |
for i in range(len(mu_batch_list)): | |
############### | |
# get z_samples | |
############### | |
mu, logvar = mu_batch_list[i].cuda(), logvar_batch_list[i].cuda() | |
# [z_batch, 1, nz] | |
z_samples = self.reparameterize(mu, logvar, 1) | |
z_samples = z_samples.view(-1, 1, nz) | |
num_examples += z_samples.size(0) | |
############### | |
# compute density | |
############### | |
# [1, x_batch, nz] | |
#mu, logvar = mu_batch_list[i].cuda(), logvar_batch_list[i].cuda() | |
#indices = list(np.random.choice(np.arange(len(mu_batch_list)), 10)) + [i] | |
indices = np.arange(len(mu_batch_list)) | |
mu = torch.cat([mu_batch_list[_] for _ in indices], dim=0).cuda() | |
logvar = torch.cat([logvar_batch_list[_] for _ in indices], dim=0).cuda() | |
x_batch, nz = mu.size() | |
mu, logvar = mu.unsqueeze(0), logvar.unsqueeze(0) | |
var = logvar.exp() | |
# (z_batch, x_batch, nz) | |
dev = z_samples - mu | |
# (z_batch, x_batch) | |
log_density = -0.5 * ((dev ** 2) / var).sum(dim=-1) - \ | |
0.5 * (nz * math.log(2 * math.pi) + logvar.sum(-1)) | |
# log q(z): aggregate posterior | |
# [z_batch] | |
log_qz += (log_sum_exp(log_density, dim=1) - math.log(x_batch)).sum(-1) | |
log_qz /= num_examples | |
mi = neg_entropy - log_qz | |
return mi | |
def calc_au(self, eval_dataloader, args, delta=0.01): | |
"""compute the number of active units | |
""" | |
cnt = 0 | |
for batch_data in eval_dataloader: | |
x0, _, _ = batch_data | |
x0 = x0.to(args.device) | |
# encoding into bert features | |
bert_fea = self.encoder(x0)[1] | |
# (batch_size, nz) | |
mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1) | |
if cnt == 0: | |
means_sum = mean.sum(dim=0, keepdim=True) | |
else: | |
means_sum = means_sum + mean.sum(dim=0, keepdim=True) | |
cnt += mean.size(0) | |
# (1, nz) | |
mean_mean = means_sum / cnt | |
cnt = 0 | |
for batch_data in eval_dataloader: | |
x0, _, _ = batch_data | |
x0 = x0.to(args.device) | |
# encoding into bert features | |
bert_fea = self.encoder(x0)[1] | |
# (batch_size, nz) | |
mean, _ = self.encoder.linear(bert_fea).chunk(2, -1) | |
if cnt == 0: | |
var_sum = ((mean - mean_mean) ** 2).sum(dim=0) | |
else: | |
var_sum = var_sum + ((mean - mean_mean) ** 2).sum(dim=0) | |
cnt += mean.size(0) | |
# (nz) | |
au_var = var_sum / (cnt - 1) | |
return (au_var >= delta).sum().item(), au_var | |
from .optimus_models.optimus_bert import BertForLatentConnector_XX | |
class optimus_bert_connector(BertForLatentConnector_XX): | |
pass | |
from .optimus_models.tokenization_bert import BertTokenizer | |
class optimus_bert_tokenizer(BertTokenizer): | |
pass | |
from .optimus_models.optimus_gpt2 import GPT2ForLatentConnector_XX | |
class optimus_gpt2_connector(GPT2ForLatentConnector_XX): | |
pass | |
from .optimus_models.tokenization_gpt2 import GPT2Tokenizer | |
class optimus_gpt2_tokenizer(GPT2Tokenizer): | |
pass | |
############################## | |
# some helpers for inference # | |
############################## | |
def sample_single_sequence_conditional( | |
model, | |
context, | |
past=None, | |
temperature=1, | |
top_k=0, | |
top_p=0.0, | |
eos_token=50829, | |
max_length=30, ): | |
past = past.unsqueeze(0) | |
generated = context.unsqueeze(0) | |
with torch.no_grad(): | |
while True: | |
# for _ in trange(length): | |
inputs = {'input_ids': generated, 'past': past} | |
outputs = model(**inputs) | |
next_token_logits = outputs[0][0, -1, :] / temperature | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1) | |
if next_token[0].item() == eos_token: | |
break | |
if generated.shape[1] >= max_length: | |
generated[0, -1] = eos_token | |
break | |
return generated.squeeze(0) | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
######################## | |
# compatible to vd 2.0 # | |
######################## | |
class optimus_vae_next(optimus_vae): | |
def get_device(self): | |
return self.encoder.linear.weight.device | |
def encode(self, text, max_length=77): | |
tokenizer = self.tokenizer_encoder | |
token = [tokenizer.tokenize(sentence.lower()) for sentence in text] | |
token = [ti[0:max_length] for ti in token] | |
token_id = [] | |
for tokeni in token: | |
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni] | |
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence) | |
token_id.append(torch.LongTensor(token_sentence)) | |
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0) | |
token_id = token_id.to(self.get_device()) | |
z = self.encoder(token_id, attention_mask=(token_id > 0).float())[1] | |
z_mu, z_logvar = self.encoder.linear(z).chunk(2, -1) | |
# z_sampled = self.reparameterize(z_mu, z_logvar, 1) | |
return z_mu.squeeze(1) | |
def decode(self, z, temperature=1.0): | |
bos_token = self.tokenizer_decoder.encode('<BOS>') | |
eos_token = self.tokenizer_decoder.encode('<EOS>') | |
context_tokens = torch.LongTensor(bos_token).to(z.device) | |
sentenses = [] | |
for zi in z: | |
out = sample_single_sequence_conditional( | |
model=self.decoder, | |
context=context_tokens, | |
past=zi, temperature=temperature, | |
top_k=0, top_p=1.0, | |
max_length=30, | |
eos_token = eos_token[0],) | |
text = self.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True) | |
text = text.split()[1:-1] | |
text = ' '.join(text) | |
sentenses.append(text) | |
return sentenses | |