Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from contextlib import contextmanager | |
from lib.model_zoo.common.get_model import get_model, register | |
# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
from .autokl_modules import Encoder, Decoder | |
from .distributions import DiagonalGaussianDistribution | |
from .autokl_utils import LPIPSWithDiscriminator | |
class AutoencoderKL(nn.Module): | |
def __init__(self, | |
ddconfig, | |
lossconfig, | |
embed_dim,): | |
super().__init__() | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
if lossconfig is not None: | |
self.loss = LPIPSWithDiscriminator(**lossconfig) | |
assert ddconfig["double_z"] | |
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
def encode(self, x, out_posterior=False): | |
return self.encode_trainable(x, out_posterior) | |
def encode_trainable(self, x, out_posterior=False): | |
x = x*2-1 | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if out_posterior: | |
return posterior | |
else: | |
return posterior.sample() | |
def decode(self, z): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
dec = torch.clamp((dec+1)/2, 0, 1) | |
return dec | |
def decode_trainable(self, z): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
dec = (dec+1)/2 | |
return dec | |
def apply_model(self, input, sample_posterior=True): | |
posterior = self.encode_trainable(input, out_posterior=True) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode_trainable(z) | |
return dec, posterior | |
def get_input(self, batch, k): | |
x = batch[k] | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
return x | |
def forward(self, x, optimizer_idx, global_step): | |
reconstructions, posterior = self.apply_model(x) | |
if optimizer_idx == 0: | |
# train encoder+decoder+logvar | |
aeloss, log_dict_ae = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step, | |
last_layer=self.get_last_layer(), split="train") | |
return aeloss, log_dict_ae | |
if optimizer_idx == 1: | |
# train the discriminator | |
discloss, log_dict_disc = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step, | |
last_layer=self.get_last_layer(), split="train") | |
return discloss, log_dict_disc | |
def validation_step(self, batch, batch_idx): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
self.log_dict(log_dict_ae) | |
self.log_dict(log_dict_disc) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
list(self.decoder.parameters())+ | |
list(self.quant_conv.parameters())+ | |
list(self.post_quant_conv.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
lr=lr, betas=(0.5, 0.9)) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, only_inputs=False, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
if not only_inputs: | |
xrec, posterior = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["samples"] = self.decode(torch.randn_like(posterior.sample())) | |
log["reconstructions"] = xrec | |
log["inputs"] = x | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
return x | |