Spaces:
Running
on
L4
Running
on
L4
File size: 17,512 Bytes
2fbcf51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log
symbol = 'vd'
from .diffusion_utils import \
count_params, extract_into_tensor, make_beta_schedule
from .distributions import normal_kl, DiagonalGaussianDistribution
from .autokl import AutoencoderKL
from .ema import LitEma
def highlight_print(info):
print_log('')
print_log(''.join(['#']*(len(info)+4)))
print_log('# '+info+' #')
print_log(''.join(['#']*(len(info)+4)))
print_log('')
class String_Reg_Buffer(nn.Module):
def __init__(self, output_string):
super().__init__()
torch_string = torch.ByteTensor(list(bytes(output_string, 'utf8')))
self.register_buffer('output_string', torch_string)
@torch.no_grad()
def forward(self, *args, **kwargs):
list_str = self.output_string.tolist()
output_string = bytes(list_str)
output_string = output_string.decode()
return output_string
@register('vd_v2_0')
class VD_v2_0(nn.Module):
def __init__(self,
vae_cfg_list,
ctx_cfg_list,
diffuser_cfg_list,
global_layer_ptr=None,
parameterization="eps",
timesteps=1000,
use_ema=False,
beta_schedule="linear",
beta_linear_start=1e-4,
beta_linear_end=2e-2,
given_betas=None,
cosine_s=8e-3,
loss_type="l2",
l_simple_weight=1.,
l_elbo_weight=0.,
v_posterior=0.,
learn_logvar=False,
logvar_init=0,
latent_scale_factor=None,):
super().__init__()
assert parameterization in ["eps", "x0"], \
'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
highlight_print("Running in {} mode".format(self.parameterization))
self.vae = self.get_model_list(vae_cfg_list)
self.ctx = self.get_model_list(ctx_cfg_list)
self.diffuser = self.get_model_list(diffuser_cfg_list)
self.global_layer_ptr = global_layer_ptr
assert self.check_diffuser(), 'diffuser layers are not aligned!'
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.loss_type = loss_type
self.l_simple_weight = l_simple_weight
self.l_elbo_weight = l_elbo_weight
self.v_posterior = v_posterior
self.device = 'cpu'
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=beta_linear_start,
linear_end=beta_linear_end,
cosine_s=cosine_s)
self.learn_logvar = learn_logvar
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
self.latent_scale_factor = {} if latent_scale_factor is None else latent_scale_factor
self.parameter_group = {}
for namei, diffuseri in self.diffuser.items():
self.parameter_group.update({
'diffuser_{}_{}'.format(namei, pgni):pgi for pgni, pgi in diffuseri.parameter_group.items()
})
def to(self, device):
self.device = device
super().to(device)
def get_model_list(self, cfg_list):
net = nn.ModuleDict()
for name, cfg in cfg_list:
if not isinstance(cfg, str):
net[name] = get_model()(cfg)
else:
net[name] = String_Reg_Buffer(cfg)
return net
def register_schedule(self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, \
'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
else:
raise NotImplementedError("mu not supported")
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print_log(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print_log(f"{context}: Restored training weights")
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
value1 = extract_into_tensor(
self.sqrt_recip_alphas_cumprod, t, x_t.shape)
value2 = extract_into_tensor(
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
return value1*x_t -value2*noise
def q_sample(self, x_start, t, noise=None):
noise = torch.randn_like(x_start) if noise is None else noise
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def forward(self, x_info, c_info):
x = x_info['x']
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
return self.p_losses(x_info, t, c_info)
def p_losses(self, x_info, t, c_info, noise=None):
x = x_info['x']
noise = torch.randn_like(x) if noise is None else noise
x_noisy = self.q_sample(x_start=x, t=t, noise=noise)
x_info['x'] = x_noisy
model_output = self.apply_model(x_info, t, c_info)
loss_dict = {}
if self.parameterization == "x0":
target = x
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
bs = model_output.shape[0]
loss_simple = self.get_loss(model_output, target, mean=False).view(bs, -1).mean(-1)
loss_dict['loss_simple'] = loss_simple.mean()
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
if self.learn_logvar:
loss_dict['loss_gamma'] = loss.mean()
loss_dict['logvar' ] = self.logvar.data.mean()
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).view(bs, -1).mean(-1)
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict['loss_vlb'] = loss_vlb
loss_dict.update({'Loss': loss})
return loss, loss_dict
@torch.no_grad()
def vae_encode(self, x, which, **kwargs):
z = self.vae[which].encode(x, **kwargs)
if self.latent_scale_factor is not None:
if self.latent_scale_factor.get(which, None) is not None:
scale = self.latent_scale_factor[which]
return scale * z
return z
@torch.no_grad()
def vae_decode(self, z, which, **kwargs):
if self.latent_scale_factor is not None:
if self.latent_scale_factor.get(which, None) is not None:
scale = self.latent_scale_factor[which]
z = 1./scale * z
x = self.vae[which].decode(z, **kwargs)
return x
@torch.no_grad()
def ctx_encode(self, x, which, **kwargs):
if which.find('vae_') == 0:
return self.vae[which[4:]].encode(x, **kwargs)
else:
return self.ctx[which].encode(x, **kwargs)
def ctx_encode_trainable(self, x, which, **kwargs):
if which.find('vae_') == 0:
return self.vae[which[4:]].encode(x, **kwargs)
else:
return self.ctx[which].encode(x, **kwargs)
def check_diffuser(self):
for idx, (_, diffuseri) in enumerate(self.diffuser.items()):
if idx==0:
order = diffuseri.layer_order
else:
if not order == diffuseri.layer_order:
return False
return True
@torch.no_grad()
def on_train_batch_start(self, x):
pass
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def apply_model(self, x_info, timesteps, c_info):
x_type, x = x_info['type'], x_info['x']
c_type, c = c_info['type'], c_info['c']
dtype = x.dtype
hs = []
from .openaimodel import timestep_embedding
glayer_ptr = x_type if self.global_layer_ptr is None else self.global_layer_ptr
model_channels = self.diffuser[glayer_ptr].model_channels
t_emb = timestep_embedding(timesteps, model_channels, repeat_only=False).to(dtype)
emb = self.diffuser[glayer_ptr].time_embed(t_emb)
d_iter = iter(self.diffuser[x_type].data_blocks)
c_iter = iter(self.diffuser[c_type].context_blocks)
i_order = self.diffuser[x_type].i_order
m_order = self.diffuser[x_type].m_order
o_order = self.diffuser[x_type].o_order
h = x
for ltype in i_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, c)
elif ltype == 'save_hidden_feature':
hs.append(h)
for ltype in m_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, c)
for ltype in o_order:
if ltype == 'load_hidden_feature':
h = torch.cat([h, hs.pop()], dim=1)
elif ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, c)
o = h
return o
def context_mixing(self, x, emb, context_module_list, context_info_list, mixing_type):
nm = len(context_module_list)
nc = len(context_info_list)
assert nm == nc
context = [c_info['c'] for c_info in context_info_list]
cratio = np.array([c_info['ratio'] for c_info in context_info_list])
cratio = cratio / cratio.sum()
if mixing_type == 'attention':
h = None
for module, c, r in zip(context_module_list, context, cratio):
hi = module(x, emb, c) * r
h = h+hi if h is not None else hi
return h
elif mixing_type == 'layer':
ni = npr.choice(nm, p=cratio)
module = context_module_list[ni]
c = context[ni]
h = module(x, emb, c)
return h
def apply_model_multicontext(self, x_info, timesteps, c_info_list, mixing_type='attention'):
'''
context_info_list: [[context_type, context, ratio]] for 'attention'
'''
x_type, x = x_info['type'], x_info['x']
dtype = x.dtype
hs = []
from .openaimodel import timestep_embedding
model_channels = self.diffuser[x_type].model_channels
t_emb = timestep_embedding(timesteps, model_channels, repeat_only=False).to(dtype)
emb = self.diffuser[x_type].time_embed(t_emb)
d_iter = iter(self.diffuser[x_type].data_blocks)
c_iter_list = [iter(self.diffuser[c_info['type']].context_blocks) for c_info in c_info_list]
i_order = self.diffuser[x_type].i_order
m_order = self.diffuser[x_type].m_order
o_order = self.diffuser[x_type].o_order
h = x
for ltype in i_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module_list = [next(c_iteri) for c_iteri in c_iter_list]
h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type)
elif ltype == 'save_hidden_feature':
hs.append(h)
for ltype in m_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module_list = [next(c_iteri) for c_iteri in c_iter_list]
h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type)
for ltype in o_order:
if ltype == 'load_hidden_feature':
h = torch.cat([h, hs.pop()], dim=1)
elif ltype == 'd':
module = next(d_iter)
h = module(h, emb, None)
elif ltype == 'c':
module_list = [next(c_iteri) for c_iteri in c_iter_list]
h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type)
o = h
return o
|