praeclarumjj3 commited on
Commit
8d8e128
·
1 Parent(s): 831e281

Update chat.py

Browse files
Files changed (1) hide show
  1. chat.py +194 -354
chat.py CHANGED
@@ -1,366 +1,206 @@
 
 
 
1
  import argparse
2
- import datetime
3
  import json
4
- import os
5
- import time
6
-
7
- import gradio as gr
8
- import hashlib
9
-
10
- from vcoder_llava.vcoder_conversation import (default_conversation, conv_templates,
11
- SeparatorStyle)
12
- from vcoder_llava.constants import LOGDIR
13
- from vcoder_llava.utils import (build_logger, server_error_msg,
14
- violates_moderation, moderation_msg)
15
- from chat import Chat
16
-
17
-
18
- logger = build_logger("gradio_app", "gradio_web_server.log")
19
-
20
- headers = {"User-Agent": "VCoder Client"}
21
-
22
- no_change_btn = gr.Button()
23
- enable_btn = gr.Button(interactive=True)
24
- disable_btn = gr.Button(interactive=False)
25
-
26
- priority = {
27
- "vicuna-13b": "aaaaaaa",
28
- "koala-13b": "aaaaaab",
29
- }
30
-
31
-
32
- def get_conv_log_filename():
33
- t = datetime.datetime.now()
34
- name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
35
- return name
36
-
37
-
38
- get_window_url_params = """
39
- function() {
40
- const params = new URLSearchParams(window.location.search);
41
- url_params = Object.fromEntries(params);
42
- console.log(url_params);
43
- return url_params;
44
- }
45
- """
46
-
47
-
48
- def load_demo_refresh_model_list(request: gr.Request):
49
- logger.info(f"load_demo. ip: {request.client.host}")
50
- state = default_conversation.copy()
51
- return state
52
-
53
-
54
- def vote_last_response(state, vote_type, model_selector, request: gr.Request):
55
- with open(get_conv_log_filename(), "a") as fout:
56
- data = {
57
- "tstamp": round(time.time(), 4),
58
- "type": vote_type,
59
- "model": model_selector,
60
- "state": state.dict(),
61
- }
62
- fout.write(json.dumps(data) + "\n")
63
-
64
-
65
- def upvote_last_response(state, model_selector, request: gr.Request):
66
- vote_last_response(state, "upvote", model_selector, request)
67
- return ("",) + (disable_btn,) * 3
68
-
69
-
70
- def downvote_last_response(state, model_selector, request: gr.Request):
71
- vote_last_response(state, "downvote", model_selector, request)
72
- return ("",) + (disable_btn,) * 3
73
-
74
-
75
- def flag_last_response(state, model_selector, request: gr.Request):
76
- vote_last_response(state, "flag", model_selector, request)
77
- return ("",) + (disable_btn,) * 3
78
-
79
- def regenerate(state, image_process_mode, seg_process_mode, depth_process_mode):
80
- state.messages[-1][-1] = None
81
- prev_human_msg = state.messages[-2]
82
- if type(prev_human_msg[1]) in (tuple, list):
83
- prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, prev_human_msg[1][5], depth_process_mode)
84
- state.skip_next = False
85
- return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
86
-
87
-
88
- def clear_history(request: gr.Request):
89
- state = default_conversation.copy()
90
- return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
91
-
92
-
93
- def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request):
94
- logger.info(f"add_text. len: {len(text)}")
95
- if len(text) <= 0 and image is None:
96
- state.skip_next = True
97
- return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (no_change_btn,) * 5
98
- if args.moderate:
99
- flagged = violates_moderation(text)
100
- if flagged:
101
- state.skip_next = True
102
- return (state, state.to_gradio_chatbot(), moderation_msg, None, None, None, None) + (
103
- no_change_btn,) * 5
104
-
105
- text = text[:1200] # Hard cut-off
106
- if image is not None:
107
- text = text[:864] # Hard cut-off for images
108
- if '<image>' not in text:
109
- text = '<image>\n' + text
110
- if seg is not None:
111
- if '<seg>' not in text:
112
- text = '<seg>\n' + text
113
- if depth is not None:
114
- if '<depth>' not in text:
115
- text = '<depth>\n' + text
116
-
117
- text = (text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode)
118
- if len(state.get_images(return_pil=True)) > 0:
119
- state = default_conversation.copy()
120
- state.append_message(state.roles[0], text)
121
- state.append_message(state.roles[1], None)
122
- state.skip_next = False
123
- return (state, state.to_gradio_chatbot(), "", None, None, None) + (disable_btn,) * 5
124
-
125
-
126
- def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
127
- start_tstamp = time.time()
128
- model_name = model_selector
129
-
130
- if state.skip_next:
131
- # This generate call is skipped due to invalid inputs
132
- yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
133
- return
134
-
135
- if len(state.messages) == state.offset + 2:
136
- # First round of conversation
137
- if "llava" in model_name.lower():
138
- template_name = "llava_v1"
139
- new_state = conv_templates[template_name].copy()
140
- new_state.append_message(new_state.roles[0], state.messages[-2][1])
141
- new_state.append_message(new_state.roles[1], None)
142
- state = new_state
143
-
144
- # Construct prompt
145
- prompt = state.get_prompt()
146
-
147
- # Make requests
148
- pload = {
149
- "model": model_name,
150
- "prompt": prompt,
151
- "temperature": float(temperature),
152
- "top_p": float(top_p),
153
- "max_new_tokens": min(int(max_new_tokens), 1536),
154
- "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
155
- "images": f'List of {len(state.get_images())}',
156
- "segs": f'List of {len(state.get_segs())}',
157
- "depths": f'List of {len(state.get_depths())}',
158
- }
159
- logger.info(f"==== request ====\n{pload}")
160
-
161
- pload['images'] = state.get_images()
162
- pload['segs'] = state.get_segs()
163
- pload['depths'] = state.get_depths()
164
-
165
- state.messages[-1][-1] = "▌"
166
- yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
167
-
168
-
169
- try:
170
- # Stream output
171
- response = chat.generate_stream_gate(pload)
172
- for chunk in response:
173
- if chunk:
174
- data = json.loads(chunk.decode())
175
- if data["error_code"] == 0:
176
- output = data["text"][len(prompt):].strip()
177
- state.messages[-1][-1] = output + "▌"
178
- yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
179
  else:
180
- output = data["text"] + f" (error_code: {data['error_code']})"
181
- state.messages[-1][-1] = output
182
- yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
183
- return
184
- time.sleep(0.03)
185
- except Exception:
186
- gr.Warning(server_error_msg)
187
- state.messages[-1][-1] = server_error_msg
188
- yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
189
- return
190
-
191
- state.messages[-1][-1] = state.messages[-1][-1][:-1]
192
- yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
193
- logger.info(f"{output}")
194
-
195
-
196
- title = "<h1 style='margin-bottom: -10px; text-align: center'>VCoder: Versatile Vision Encoders for Multimodal Large Language Models</h1>"
197
- # style='
198
- description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain, </a> <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang, <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi</a></p>" \
199
- + "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Project Page</a> | <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/VCoder' target='_blank'>Github Repo</a></p>" \
200
- + "<p style='text-align: center; font-size: 16px; margin: 5px; font-weight: w300;'> [Note: You can obtain segmentation maps for your image using the <a href='https://huggingface.co/spaces/shi-labs/OneFormer' style='text-decoration:none' target='_blank'>OneFormer Demo</a> and the depth map from <a href='https://github.com/facebookresearch/dinov2/blob/main/notebooks/depth_estimation.ipynb' style='text-decoration:none' target='_blank'>DINOv2</a>. Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials <a href='https://github.com/SHI-Labs/VCoder/blob/main/images/' style='text-decoration:none' target='_blank'>here</a>.]</p>"
201
-
202
- tos_markdown = ("""
203
- ### Terms of use
204
- By using this service, users are required to agree to the following terms:
205
- The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
206
- """)
207
-
208
-
209
- learn_more_markdown = ("""
210
- ### License
211
- The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
212
- """)
213
-
214
- block_css = """
215
-
216
- #buttons button {
217
- min-width: min(120px,100%);
218
- }
219
-
220
- """
221
-
222
- def build_demo(embed_mode):
223
-
224
- textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
225
- with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
226
- state = gr.State()
227
-
228
- if not embed_mode:
229
- gr.Markdown(title)
230
- gr.Markdown(description)
231
-
232
- with gr.Row():
233
- with gr.Column(scale=3):
234
- with gr.Row(elem_id="model_selector_row"):
235
- model_selector = gr.Dropdown(
236
- choices=[model + "-4bit" for model in models],
237
- value=models[0]+"-4bit" if len(models) > 0 else "",
238
- interactive=True,
239
- show_label=False,
240
- container=False)
241
-
242
- # with gr.Row():
243
- imagebox = gr.Image(type="pil", label="Image Input")
244
- image_process_mode = gr.Radio(
245
- ["Crop", "Resize", "Pad", "Default"],
246
- value="Default",
247
- label="Preprocess for non-square image", visible=False)
248
-
249
- segbox = gr.Image(type="pil", label="Seg Map")
250
- seg_process_mode = gr.Radio(
251
- ["Crop", "Resize", "Pad", "Default"],
252
- value="Default",
253
- label="Preprocess for non-square Seg Map", visible=False)
254
 
255
- depthbox = gr.Image(type="pil", label="Depth Map")
256
- depth_process_mode = gr.Radio(
257
- ["Crop", "Resize", "Pad", "Default"],
258
- value="Default",
259
- label="Preprocess for non-square Depth Map", visible=False)
260
-
261
- with gr.Accordion("Parameters", open=False) as parameter_row:
262
- temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature",)
263
- top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.1, interactive=True, label="Top P",)
264
- max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
265
-
266
- with gr.Column(scale=8):
267
- chatbot = gr.Chatbot(elem_id="chatbot", label="VCoder Chatbot", height=550)
268
- with gr.Row():
269
- with gr.Column(scale=8):
270
- textbox.render()
271
- with gr.Column(scale=1, min_width=50):
272
- submit_btn = gr.Button(value="Send", variant="primary")
273
- with gr.Row(elem_id="buttons") as button_row:
274
- upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
275
- downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
276
- flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
277
- #stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
278
- regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
279
- clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
280
-
281
- cur_dir = os.path.dirname(os.path.abspath(__file__))
282
- gr.Examples(examples=[
283
- [f"{cur_dir}/examples/people.jpg", f"{cur_dir}/examples/people_pan.png", None, "What objects can be seen in the image?", "0.9", "1.0"],
284
- [f"{cur_dir}/examples/corgi.jpg", f"{cur_dir}/examples/corgi_pan.png", None, "What objects can be seen in the image?", "0.6", "0.7"],
285
- [f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", f"{cur_dir}/examples/suits_depth.jpeg", "Can you describe the depth order of the objects in this image, from closest to farthest?", "0.5", "0.5"],
286
- [f"{cur_dir}/examples/depth.jpeg", f"{cur_dir}/examples/depth_pan.png", f"{cur_dir}/examples/depth_depth.png", "Can you describe the depth order of the objects in this image, from closest to farthest?", "0.5", "0.5"],
287
- [f"{cur_dir}/examples/friends.jpg", f"{cur_dir}/examples/friends_pan.png", None, "What is happening in the image?", "0.8", "0.9"],
288
- [f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", None, "What objects can be seen in the image?", "0.5", "0.5"],
289
- ], inputs=[imagebox, segbox, depthbox, textbox, temperature, top_p])
290
-
291
- if not embed_mode:
292
- gr.Markdown(tos_markdown)
293
- gr.Markdown(learn_more_markdown)
294
-
295
- # Register listeners
296
- btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
297
- upvote_btn.click(upvote_last_response,
298
- [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
299
- downvote_btn.click(downvote_last_response,
300
- [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
301
- flag_btn.click(flag_last_response,
302
- [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
303
- regenerate_btn.click(regenerate, [state, image_process_mode, seg_process_mode, depth_process_mode],
304
- [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list).then(
305
- http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
306
- [state, chatbot] + btn_list)
307
- clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list)
308
-
309
- textbox.submit(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list
310
- ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
311
- [state, chatbot] + btn_list)
312
- submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list
313
- ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
314
- [state, chatbot] + btn_list)
315
-
316
- demo.load(load_demo_refresh_model_list, None, [state])
317
-
318
- return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319
 
320
 
321
  if __name__ == "__main__":
322
  parser = argparse.ArgumentParser()
323
- parser.add_argument("--model-path", type=str, default="shi-labs/vcoder_ds_llava-v1.5-13b")
 
 
 
 
 
 
324
  parser.add_argument("--model-base", type=str, default=None)
325
  parser.add_argument("--model-name", type=str)
 
 
 
 
 
326
  parser.add_argument("--load-8bit", action="store_true")
327
  parser.add_argument("--load-4bit", action="store_true")
328
- parser.add_argument("--device", type=str, default="cuda")
329
- parser.add_argument("--share", action="store_true")
330
- parser.add_argument("--moderate", action="store_true")
331
- parser.add_argument("--embed", action="store_true")
332
- parser.add_argument("--concurrency-count", type=int, default=10)
333
- parser.add_argument("--host", type=str, default="0.0.0.0")
334
- parser.add_argument("--port", type=int)
335
- args = parser.parse_args()
336
- logger.info(f"args: {args}")
337
-
338
- if args.model_name is None:
339
- model_paths = args.model_path.split("/")
340
- if model_paths[-1].startswith('checkpoint-'):
341
- model_name = model_paths[-2] + "_" + model_paths[-1]
342
- else:
343
- model_name = model_paths[-1]
344
- else:
345
- model_name = args.model_name
346
-
347
- models = [model_name]
348
- args.load_4bit = True
349
-
350
- chat = Chat(
351
- args.model_path,
352
- args.model_base,
353
- args.model_name,
354
- args.load_8bit,
355
- args.load_4bit,
356
- args.device,
357
- logger
358
- )
359
-
360
- logger.info(args)
361
- demo = build_demo(args.embed)
362
- demo.queue().launch(
363
- server_name=args.host,
364
- server_port=args.port,
365
- share=args.share
366
- )
 
1
+ """
2
+ A model worker executes the model.
3
+ """
4
  import argparse
 
5
  import json
6
+ import torch
7
+
8
+ from vcoder_llava.utils import server_error_msg
9
+ from vcoder_llava.model.builder import load_pretrained_model
10
+ from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria
11
+ from vcoder_llava.constants import (
12
+ IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,
13
+ SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN,
14
+ DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN,
15
+ )
16
+ from transformers import TextIteratorStreamer
17
+ from threading import Thread
18
+
19
+ class Chat:
20
+ def __init__(self, model_path, model_base, model_name,
21
+ load_8bit, load_4bit, device, logger):
22
+ if model_path.endswith("/"):
23
+ model_path = model_path[:-1]
24
+ if model_name is None:
25
+ model_paths = model_path.split("/")
26
+ if model_paths[-1].startswith('checkpoint-'):
27
+ self.model_name = model_paths[-2] + "_" + model_paths[-1]
28
+ else:
29
+ self.model_name = model_paths[-1]
30
+ else:
31
+ self.model_name = model_name
32
+
33
+ self.device = device
34
+ logger.info(f"Loading the model {self.model_name} ...")
35
+ self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model(
36
+ model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
37
+ self.is_multimodal = 'llava' in self.model_name.lower()
38
+ self.is_seg = "vcoder" in self.model_name.lower()
39
+ self.is_depth = "ds" in self.model_name.lower()
40
+
41
+ @torch.inference_mode()
42
+ def generate_stream(self, params):
43
+ tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor
44
+
45
+ prompt = params["prompt"]
46
+ ori_prompt = prompt
47
+ images = params.get("images", None)
48
+ segs = params.get("segs", None)
49
+ depths = params.get("depths", None)
50
+ num_image_tokens = 0
51
+ num_seg_tokens = 0
52
+ num_depth_tokens = 0
53
+ if images is not None and len(images) > 0 and self.is_multimodal:
54
+ if len(images) > 0:
55
+ if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
56
+ raise ValueError("Number of images does not match number of <image> tokens in prompt")
57
+
58
+ images = [load_image_from_base64(image) for image in images]
59
+ images = process_images(images, image_processor, model.config)
60
+
61
+ if type(images) is list:
62
+ images = [image.to(self.model.device, dtype=torch.float16) for image in images]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  else:
64
+ images = images.to(self.model.device, dtype=torch.float16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
+ replace_token = DEFAULT_IMAGE_TOKEN
67
+ prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
68
+ num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
69
+
70
+ if segs is not None and len(segs) > 0 and self.is_seg:
71
+ if len(segs) != prompt.count(DEFAULT_SEG_TOKEN):
72
+ raise ValueError("Number of segs does not match number of <seg> tokens in prompt")
73
+
74
+ segs = [load_image_from_base64(seg) for seg in segs]
75
+ segs = process_images(segs, seg_image_processor, model.config)
76
+
77
+ if type(segs) is list:
78
+ segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs]
79
+ else:
80
+ segs = segs.to(self.model.device, dtype=torch.float16)
81
+
82
+ replace_seg_token = DEFAULT_SEG_TOKEN
83
+ prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token)
84
+ num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches
85
+
86
+ if depths is not None and len(depths) > 0 and self.is_depth:
87
+ if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN):
88
+ raise ValueError("Number of depths does not match number of <depth> tokens in prompt")
89
+
90
+ depths = [load_image_from_base64(depth) for depth in depths]
91
+ depths = process_images(depths, depth_image_processor, model.config)
92
+
93
+ if type(depths) is list:
94
+ depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths]
95
+ else:
96
+ depths = depths.to(self.model.device, dtype=torch.float16)
97
+
98
+ replace_depth_token = DEFAULT_DEPTH_TOKEN
99
+ prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token)
100
+ num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches
101
+ else:
102
+ depths = None
103
+ else:
104
+ segs = None
105
+ depths = None
106
+ else:
107
+ images = None
108
+ segs = None
109
+ depths = None
110
+ image_args = {"images": images, "segs": segs, "depths": depths}
111
+ else:
112
+ images = None
113
+ segs = None
114
+ depths = None
115
+ image_args = {}
116
+
117
+ temperature = float(params.get("temperature", 1.0))
118
+ top_p = float(params.get("top_p", 1.0))
119
+ max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
120
+ max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
121
+ stop_str = params.get("stop", None)
122
+ do_sample = True if temperature > 0.001 else False
123
+
124
+ if self.is_seg:
125
+ if self.is_depth:
126
+ input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
127
+ else:
128
+ input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
129
+ else:
130
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
131
+ keywords = [stop_str]
132
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
133
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
134
+
135
+ max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens)
136
+
137
+ if max_new_tokens < 1:
138
+ yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
139
+ return
140
+
141
+ generated_text = model.generate(
142
+ inputs=input_ids,
143
+ do_sample=do_sample,
144
+ temperature=temperature,
145
+ top_p=top_p,
146
+ max_new_tokens=max_new_tokens,
147
+ streamer=streamer,
148
+ stopping_criteria=[stopping_criteria],
149
+ use_cache=True,
150
+ **image_args
151
+ )
152
+ # thread.start()
153
+
154
+ generated_text = ori_prompt
155
+ for new_text in streamer:
156
+ generated_text += new_text
157
+ if generated_text.endswith(stop_str):
158
+ generated_text = generated_text[:-len(stop_str)]
159
+ yield json.dumps({"text": generated_text, "error_code": 0}).encode()
160
+
161
+ def generate_stream_gate(self, params):
162
+ try:
163
+ for x in self.generate_stream(params):
164
+ yield x
165
+ except ValueError as e:
166
+ print("Caught ValueError:", e)
167
+ ret = {
168
+ "text": server_error_msg,
169
+ "error_code": 1,
170
+ }
171
+ yield json.dumps(ret).encode()
172
+ except torch.cuda.CudaError as e:
173
+ print("Caught torch.cuda.CudaError:", e)
174
+ ret = {
175
+ "text": server_error_msg,
176
+ "error_code": 1,
177
+ }
178
+ yield json.dumps(ret).encode()
179
+ except Exception as e:
180
+ print("Caught Unknown Error", e)
181
+ ret = {
182
+ "text": server_error_msg,
183
+ "error_code": 1,
184
+ }
185
+ yield json.dumps(ret).encode()
186
 
187
 
188
  if __name__ == "__main__":
189
  parser = argparse.ArgumentParser()
190
+ parser.add_argument("--host", type=str, default="localhost")
191
+ parser.add_argument("--port", type=int, default=21002)
192
+ parser.add_argument("--worker-address", type=str,
193
+ default="http://localhost:21002")
194
+ parser.add_argument("--controller-address", type=str,
195
+ default="http://localhost:21001")
196
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
197
  parser.add_argument("--model-base", type=str, default=None)
198
  parser.add_argument("--model-name", type=str)
199
+ parser.add_argument("--device", type=str, default="cuda")
200
+ parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
201
+ parser.add_argument("--limit-model-concurrency", type=int, default=5)
202
+ parser.add_argument("--stream-interval", type=int, default=1)
203
+ parser.add_argument("--no-register", action="store_true")
204
  parser.add_argument("--load-8bit", action="store_true")
205
  parser.add_argument("--load-4bit", action="store_true")
206
+ args = parser.parse_args()