Spaces:
Runtime error
Runtime error
praeclarumjj3
commited on
Commit
·
8d8e128
1
Parent(s):
831e281
Update chat.py
Browse files
chat.py
CHANGED
@@ -1,366 +1,206 @@
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
-
import datetime
|
3 |
import json
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
}
|
62 |
-
fout.write(json.dumps(data) + "\n")
|
63 |
-
|
64 |
-
|
65 |
-
def upvote_last_response(state, model_selector, request: gr.Request):
|
66 |
-
vote_last_response(state, "upvote", model_selector, request)
|
67 |
-
return ("",) + (disable_btn,) * 3
|
68 |
-
|
69 |
-
|
70 |
-
def downvote_last_response(state, model_selector, request: gr.Request):
|
71 |
-
vote_last_response(state, "downvote", model_selector, request)
|
72 |
-
return ("",) + (disable_btn,) * 3
|
73 |
-
|
74 |
-
|
75 |
-
def flag_last_response(state, model_selector, request: gr.Request):
|
76 |
-
vote_last_response(state, "flag", model_selector, request)
|
77 |
-
return ("",) + (disable_btn,) * 3
|
78 |
-
|
79 |
-
def regenerate(state, image_process_mode, seg_process_mode, depth_process_mode):
|
80 |
-
state.messages[-1][-1] = None
|
81 |
-
prev_human_msg = state.messages[-2]
|
82 |
-
if type(prev_human_msg[1]) in (tuple, list):
|
83 |
-
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, prev_human_msg[1][5], depth_process_mode)
|
84 |
-
state.skip_next = False
|
85 |
-
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
|
86 |
-
|
87 |
-
|
88 |
-
def clear_history(request: gr.Request):
|
89 |
-
state = default_conversation.copy()
|
90 |
-
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
|
91 |
-
|
92 |
-
|
93 |
-
def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request):
|
94 |
-
logger.info(f"add_text. len: {len(text)}")
|
95 |
-
if len(text) <= 0 and image is None:
|
96 |
-
state.skip_next = True
|
97 |
-
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (no_change_btn,) * 5
|
98 |
-
if args.moderate:
|
99 |
-
flagged = violates_moderation(text)
|
100 |
-
if flagged:
|
101 |
-
state.skip_next = True
|
102 |
-
return (state, state.to_gradio_chatbot(), moderation_msg, None, None, None, None) + (
|
103 |
-
no_change_btn,) * 5
|
104 |
-
|
105 |
-
text = text[:1200] # Hard cut-off
|
106 |
-
if image is not None:
|
107 |
-
text = text[:864] # Hard cut-off for images
|
108 |
-
if '<image>' not in text:
|
109 |
-
text = '<image>\n' + text
|
110 |
-
if seg is not None:
|
111 |
-
if '<seg>' not in text:
|
112 |
-
text = '<seg>\n' + text
|
113 |
-
if depth is not None:
|
114 |
-
if '<depth>' not in text:
|
115 |
-
text = '<depth>\n' + text
|
116 |
-
|
117 |
-
text = (text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode)
|
118 |
-
if len(state.get_images(return_pil=True)) > 0:
|
119 |
-
state = default_conversation.copy()
|
120 |
-
state.append_message(state.roles[0], text)
|
121 |
-
state.append_message(state.roles[1], None)
|
122 |
-
state.skip_next = False
|
123 |
-
return (state, state.to_gradio_chatbot(), "", None, None, None) + (disable_btn,) * 5
|
124 |
-
|
125 |
-
|
126 |
-
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
127 |
-
start_tstamp = time.time()
|
128 |
-
model_name = model_selector
|
129 |
-
|
130 |
-
if state.skip_next:
|
131 |
-
# This generate call is skipped due to invalid inputs
|
132 |
-
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
133 |
-
return
|
134 |
-
|
135 |
-
if len(state.messages) == state.offset + 2:
|
136 |
-
# First round of conversation
|
137 |
-
if "llava" in model_name.lower():
|
138 |
-
template_name = "llava_v1"
|
139 |
-
new_state = conv_templates[template_name].copy()
|
140 |
-
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
141 |
-
new_state.append_message(new_state.roles[1], None)
|
142 |
-
state = new_state
|
143 |
-
|
144 |
-
# Construct prompt
|
145 |
-
prompt = state.get_prompt()
|
146 |
-
|
147 |
-
# Make requests
|
148 |
-
pload = {
|
149 |
-
"model": model_name,
|
150 |
-
"prompt": prompt,
|
151 |
-
"temperature": float(temperature),
|
152 |
-
"top_p": float(top_p),
|
153 |
-
"max_new_tokens": min(int(max_new_tokens), 1536),
|
154 |
-
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
|
155 |
-
"images": f'List of {len(state.get_images())}',
|
156 |
-
"segs": f'List of {len(state.get_segs())}',
|
157 |
-
"depths": f'List of {len(state.get_depths())}',
|
158 |
-
}
|
159 |
-
logger.info(f"==== request ====\n{pload}")
|
160 |
-
|
161 |
-
pload['images'] = state.get_images()
|
162 |
-
pload['segs'] = state.get_segs()
|
163 |
-
pload['depths'] = state.get_depths()
|
164 |
-
|
165 |
-
state.messages[-1][-1] = "▌"
|
166 |
-
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
167 |
-
|
168 |
-
|
169 |
-
try:
|
170 |
-
# Stream output
|
171 |
-
response = chat.generate_stream_gate(pload)
|
172 |
-
for chunk in response:
|
173 |
-
if chunk:
|
174 |
-
data = json.loads(chunk.decode())
|
175 |
-
if data["error_code"] == 0:
|
176 |
-
output = data["text"][len(prompt):].strip()
|
177 |
-
state.messages[-1][-1] = output + "▌"
|
178 |
-
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
179 |
else:
|
180 |
-
|
181 |
-
state.messages[-1][-1] = output
|
182 |
-
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
183 |
-
return
|
184 |
-
time.sleep(0.03)
|
185 |
-
except Exception:
|
186 |
-
gr.Warning(server_error_msg)
|
187 |
-
state.messages[-1][-1] = server_error_msg
|
188 |
-
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
189 |
-
return
|
190 |
-
|
191 |
-
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
192 |
-
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
193 |
-
logger.info(f"{output}")
|
194 |
-
|
195 |
-
|
196 |
-
title = "<h1 style='margin-bottom: -10px; text-align: center'>VCoder: Versatile Vision Encoders for Multimodal Large Language Models</h1>"
|
197 |
-
# style='
|
198 |
-
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain, </a> <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang, <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi</a></p>" \
|
199 |
-
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Project Page</a> | <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/VCoder' target='_blank'>Github Repo</a></p>" \
|
200 |
-
+ "<p style='text-align: center; font-size: 16px; margin: 5px; font-weight: w300;'> [Note: You can obtain segmentation maps for your image using the <a href='https://huggingface.co/spaces/shi-labs/OneFormer' style='text-decoration:none' target='_blank'>OneFormer Demo</a> and the depth map from <a href='https://github.com/facebookresearch/dinov2/blob/main/notebooks/depth_estimation.ipynb' style='text-decoration:none' target='_blank'>DINOv2</a>. Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials <a href='https://github.com/SHI-Labs/VCoder/blob/main/images/' style='text-decoration:none' target='_blank'>here</a>.]</p>"
|
201 |
-
|
202 |
-
tos_markdown = ("""
|
203 |
-
### Terms of use
|
204 |
-
By using this service, users are required to agree to the following terms:
|
205 |
-
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
|
206 |
-
""")
|
207 |
-
|
208 |
-
|
209 |
-
learn_more_markdown = ("""
|
210 |
-
### License
|
211 |
-
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
212 |
-
""")
|
213 |
-
|
214 |
-
block_css = """
|
215 |
-
|
216 |
-
#buttons button {
|
217 |
-
min-width: min(120px,100%);
|
218 |
-
}
|
219 |
-
|
220 |
-
"""
|
221 |
-
|
222 |
-
def build_demo(embed_mode):
|
223 |
-
|
224 |
-
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
225 |
-
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
226 |
-
state = gr.State()
|
227 |
-
|
228 |
-
if not embed_mode:
|
229 |
-
gr.Markdown(title)
|
230 |
-
gr.Markdown(description)
|
231 |
-
|
232 |
-
with gr.Row():
|
233 |
-
with gr.Column(scale=3):
|
234 |
-
with gr.Row(elem_id="model_selector_row"):
|
235 |
-
model_selector = gr.Dropdown(
|
236 |
-
choices=[model + "-4bit" for model in models],
|
237 |
-
value=models[0]+"-4bit" if len(models) > 0 else "",
|
238 |
-
interactive=True,
|
239 |
-
show_label=False,
|
240 |
-
container=False)
|
241 |
-
|
242 |
-
# with gr.Row():
|
243 |
-
imagebox = gr.Image(type="pil", label="Image Input")
|
244 |
-
image_process_mode = gr.Radio(
|
245 |
-
["Crop", "Resize", "Pad", "Default"],
|
246 |
-
value="Default",
|
247 |
-
label="Preprocess for non-square image", visible=False)
|
248 |
-
|
249 |
-
segbox = gr.Image(type="pil", label="Seg Map")
|
250 |
-
seg_process_mode = gr.Radio(
|
251 |
-
["Crop", "Resize", "Pad", "Default"],
|
252 |
-
value="Default",
|
253 |
-
label="Preprocess for non-square Seg Map", visible=False)
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
parser = argparse.ArgumentParser()
|
323 |
-
parser.add_argument("--
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
parser.add_argument("--model-base", type=str, default=None)
|
325 |
parser.add_argument("--model-name", type=str)
|
|
|
|
|
|
|
|
|
|
|
326 |
parser.add_argument("--load-8bit", action="store_true")
|
327 |
parser.add_argument("--load-4bit", action="store_true")
|
328 |
-
parser.
|
329 |
-
parser.add_argument("--share", action="store_true")
|
330 |
-
parser.add_argument("--moderate", action="store_true")
|
331 |
-
parser.add_argument("--embed", action="store_true")
|
332 |
-
parser.add_argument("--concurrency-count", type=int, default=10)
|
333 |
-
parser.add_argument("--host", type=str, default="0.0.0.0")
|
334 |
-
parser.add_argument("--port", type=int)
|
335 |
-
args = parser.parse_args()
|
336 |
-
logger.info(f"args: {args}")
|
337 |
-
|
338 |
-
if args.model_name is None:
|
339 |
-
model_paths = args.model_path.split("/")
|
340 |
-
if model_paths[-1].startswith('checkpoint-'):
|
341 |
-
model_name = model_paths[-2] + "_" + model_paths[-1]
|
342 |
-
else:
|
343 |
-
model_name = model_paths[-1]
|
344 |
-
else:
|
345 |
-
model_name = args.model_name
|
346 |
-
|
347 |
-
models = [model_name]
|
348 |
-
args.load_4bit = True
|
349 |
-
|
350 |
-
chat = Chat(
|
351 |
-
args.model_path,
|
352 |
-
args.model_base,
|
353 |
-
args.model_name,
|
354 |
-
args.load_8bit,
|
355 |
-
args.load_4bit,
|
356 |
-
args.device,
|
357 |
-
logger
|
358 |
-
)
|
359 |
-
|
360 |
-
logger.info(args)
|
361 |
-
demo = build_demo(args.embed)
|
362 |
-
demo.queue().launch(
|
363 |
-
server_name=args.host,
|
364 |
-
server_port=args.port,
|
365 |
-
share=args.share
|
366 |
-
)
|
|
|
1 |
+
"""
|
2 |
+
A model worker executes the model.
|
3 |
+
"""
|
4 |
import argparse
|
|
|
5 |
import json
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from vcoder_llava.utils import server_error_msg
|
9 |
+
from vcoder_llava.model.builder import load_pretrained_model
|
10 |
+
from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria
|
11 |
+
from vcoder_llava.constants import (
|
12 |
+
IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,
|
13 |
+
SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN,
|
14 |
+
DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN,
|
15 |
+
)
|
16 |
+
from transformers import TextIteratorStreamer
|
17 |
+
from threading import Thread
|
18 |
+
|
19 |
+
class Chat:
|
20 |
+
def __init__(self, model_path, model_base, model_name,
|
21 |
+
load_8bit, load_4bit, device, logger):
|
22 |
+
if model_path.endswith("/"):
|
23 |
+
model_path = model_path[:-1]
|
24 |
+
if model_name is None:
|
25 |
+
model_paths = model_path.split("/")
|
26 |
+
if model_paths[-1].startswith('checkpoint-'):
|
27 |
+
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
28 |
+
else:
|
29 |
+
self.model_name = model_paths[-1]
|
30 |
+
else:
|
31 |
+
self.model_name = model_name
|
32 |
+
|
33 |
+
self.device = device
|
34 |
+
logger.info(f"Loading the model {self.model_name} ...")
|
35 |
+
self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model(
|
36 |
+
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
|
37 |
+
self.is_multimodal = 'llava' in self.model_name.lower()
|
38 |
+
self.is_seg = "vcoder" in self.model_name.lower()
|
39 |
+
self.is_depth = "ds" in self.model_name.lower()
|
40 |
+
|
41 |
+
@torch.inference_mode()
|
42 |
+
def generate_stream(self, params):
|
43 |
+
tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor
|
44 |
+
|
45 |
+
prompt = params["prompt"]
|
46 |
+
ori_prompt = prompt
|
47 |
+
images = params.get("images", None)
|
48 |
+
segs = params.get("segs", None)
|
49 |
+
depths = params.get("depths", None)
|
50 |
+
num_image_tokens = 0
|
51 |
+
num_seg_tokens = 0
|
52 |
+
num_depth_tokens = 0
|
53 |
+
if images is not None and len(images) > 0 and self.is_multimodal:
|
54 |
+
if len(images) > 0:
|
55 |
+
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
56 |
+
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
57 |
+
|
58 |
+
images = [load_image_from_base64(image) for image in images]
|
59 |
+
images = process_images(images, image_processor, model.config)
|
60 |
+
|
61 |
+
if type(images) is list:
|
62 |
+
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
+
images = images.to(self.model.device, dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
67 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
68 |
+
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
|
69 |
+
|
70 |
+
if segs is not None and len(segs) > 0 and self.is_seg:
|
71 |
+
if len(segs) != prompt.count(DEFAULT_SEG_TOKEN):
|
72 |
+
raise ValueError("Number of segs does not match number of <seg> tokens in prompt")
|
73 |
+
|
74 |
+
segs = [load_image_from_base64(seg) for seg in segs]
|
75 |
+
segs = process_images(segs, seg_image_processor, model.config)
|
76 |
+
|
77 |
+
if type(segs) is list:
|
78 |
+
segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs]
|
79 |
+
else:
|
80 |
+
segs = segs.to(self.model.device, dtype=torch.float16)
|
81 |
+
|
82 |
+
replace_seg_token = DEFAULT_SEG_TOKEN
|
83 |
+
prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token)
|
84 |
+
num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches
|
85 |
+
|
86 |
+
if depths is not None and len(depths) > 0 and self.is_depth:
|
87 |
+
if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN):
|
88 |
+
raise ValueError("Number of depths does not match number of <depth> tokens in prompt")
|
89 |
+
|
90 |
+
depths = [load_image_from_base64(depth) for depth in depths]
|
91 |
+
depths = process_images(depths, depth_image_processor, model.config)
|
92 |
+
|
93 |
+
if type(depths) is list:
|
94 |
+
depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths]
|
95 |
+
else:
|
96 |
+
depths = depths.to(self.model.device, dtype=torch.float16)
|
97 |
+
|
98 |
+
replace_depth_token = DEFAULT_DEPTH_TOKEN
|
99 |
+
prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token)
|
100 |
+
num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches
|
101 |
+
else:
|
102 |
+
depths = None
|
103 |
+
else:
|
104 |
+
segs = None
|
105 |
+
depths = None
|
106 |
+
else:
|
107 |
+
images = None
|
108 |
+
segs = None
|
109 |
+
depths = None
|
110 |
+
image_args = {"images": images, "segs": segs, "depths": depths}
|
111 |
+
else:
|
112 |
+
images = None
|
113 |
+
segs = None
|
114 |
+
depths = None
|
115 |
+
image_args = {}
|
116 |
+
|
117 |
+
temperature = float(params.get("temperature", 1.0))
|
118 |
+
top_p = float(params.get("top_p", 1.0))
|
119 |
+
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
120 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
121 |
+
stop_str = params.get("stop", None)
|
122 |
+
do_sample = True if temperature > 0.001 else False
|
123 |
+
|
124 |
+
if self.is_seg:
|
125 |
+
if self.is_depth:
|
126 |
+
input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
127 |
+
else:
|
128 |
+
input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
129 |
+
else:
|
130 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
131 |
+
keywords = [stop_str]
|
132 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
133 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
134 |
+
|
135 |
+
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens)
|
136 |
+
|
137 |
+
if max_new_tokens < 1:
|
138 |
+
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
|
139 |
+
return
|
140 |
+
|
141 |
+
generated_text = model.generate(
|
142 |
+
inputs=input_ids,
|
143 |
+
do_sample=do_sample,
|
144 |
+
temperature=temperature,
|
145 |
+
top_p=top_p,
|
146 |
+
max_new_tokens=max_new_tokens,
|
147 |
+
streamer=streamer,
|
148 |
+
stopping_criteria=[stopping_criteria],
|
149 |
+
use_cache=True,
|
150 |
+
**image_args
|
151 |
+
)
|
152 |
+
# thread.start()
|
153 |
+
|
154 |
+
generated_text = ori_prompt
|
155 |
+
for new_text in streamer:
|
156 |
+
generated_text += new_text
|
157 |
+
if generated_text.endswith(stop_str):
|
158 |
+
generated_text = generated_text[:-len(stop_str)]
|
159 |
+
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
|
160 |
+
|
161 |
+
def generate_stream_gate(self, params):
|
162 |
+
try:
|
163 |
+
for x in self.generate_stream(params):
|
164 |
+
yield x
|
165 |
+
except ValueError as e:
|
166 |
+
print("Caught ValueError:", e)
|
167 |
+
ret = {
|
168 |
+
"text": server_error_msg,
|
169 |
+
"error_code": 1,
|
170 |
+
}
|
171 |
+
yield json.dumps(ret).encode()
|
172 |
+
except torch.cuda.CudaError as e:
|
173 |
+
print("Caught torch.cuda.CudaError:", e)
|
174 |
+
ret = {
|
175 |
+
"text": server_error_msg,
|
176 |
+
"error_code": 1,
|
177 |
+
}
|
178 |
+
yield json.dumps(ret).encode()
|
179 |
+
except Exception as e:
|
180 |
+
print("Caught Unknown Error", e)
|
181 |
+
ret = {
|
182 |
+
"text": server_error_msg,
|
183 |
+
"error_code": 1,
|
184 |
+
}
|
185 |
+
yield json.dumps(ret).encode()
|
186 |
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
parser = argparse.ArgumentParser()
|
190 |
+
parser.add_argument("--host", type=str, default="localhost")
|
191 |
+
parser.add_argument("--port", type=int, default=21002)
|
192 |
+
parser.add_argument("--worker-address", type=str,
|
193 |
+
default="http://localhost:21002")
|
194 |
+
parser.add_argument("--controller-address", type=str,
|
195 |
+
default="http://localhost:21001")
|
196 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
197 |
parser.add_argument("--model-base", type=str, default=None)
|
198 |
parser.add_argument("--model-name", type=str)
|
199 |
+
parser.add_argument("--device", type=str, default="cuda")
|
200 |
+
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
201 |
+
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
202 |
+
parser.add_argument("--stream-interval", type=int, default=1)
|
203 |
+
parser.add_argument("--no-register", action="store_true")
|
204 |
parser.add_argument("--load-8bit", action="store_true")
|
205 |
parser.add_argument("--load-4bit", action="store_true")
|
206 |
+
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|