shaojiang commited on
Commit
452509d
·
1 Parent(s): f209dd6

Upload 2 files

Browse files
Files changed (2) hide show
  1. generate.py +187 -0
  2. requirements.txt +9 -0
generate.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import os
4
+ import argparse
5
+ from tqdm import trange
6
+ from transformers import GPT2LMHeadModel
7
+
8
+
9
+ def is_word(word):
10
+ for item in list(word):
11
+ if item not in 'qwertyuiopasdfghjklzxcvbnm':
12
+ return False
13
+ return True
14
+
15
+
16
+ def _is_chinese_char(char):
17
+ """Checks whether CP is the codepoint of a CJK character."""
18
+ # This defines a "chinese character" as anything in the CJK Unicode block:
19
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
20
+ #
21
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
22
+ # despite its name. The modern Korean Hangul alphabet is a different block,
23
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
24
+ # space-separated words, so they are not treated specially and handled
25
+ # like the all of the other languages.
26
+ cp = ord(char)
27
+ if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
28
+ (cp >= 0x3400 and cp <= 0x4DBF) or #
29
+ (cp >= 0x20000 and cp <= 0x2A6DF) or #
30
+ (cp >= 0x2A700 and cp <= 0x2B73F) or #
31
+ (cp >= 0x2B740 and cp <= 0x2B81F) or #
32
+ (cp >= 0x2B820 and cp <= 0x2CEAF) or
33
+ (cp >= 0xF900 and cp <= 0xFAFF) or #
34
+ (cp >= 0x2F800 and cp <= 0x2FA1F)): #
35
+ return True
36
+
37
+ return False
38
+
39
+
40
+ def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
41
+ """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
42
+ Args:
43
+ logits: logits distribution shape (vocabulary size)
44
+ top_k > 0: keep only top k tokens with highest probability (top-k filtering).
45
+ top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
46
+ Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
47
+ From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
48
+ """
49
+ assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
50
+ top_k = min(top_k, logits.size(-1)) # Safety check
51
+ if top_k > 0:
52
+ # Remove all tokens with a probability less than the last token of the top-k
53
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
54
+ logits[indices_to_remove] = filter_value
55
+
56
+ if top_p > 0.0:
57
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
58
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
59
+
60
+ # Remove tokens with cumulative probability above the threshold
61
+ sorted_indices_to_remove = cumulative_probs > top_p
62
+ # Shift the indices to the right to keep also the first token above the threshold
63
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
64
+ sorted_indices_to_remove[..., 0] = 0
65
+
66
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
67
+ logits[indices_to_remove] = filter_value
68
+ return logits
69
+
70
+
71
+ def sample_sequence(model, context, length, n_ctx, tokenizer, temperature=1.0, top_k=30, top_p=0.0, repitition_penalty=1.0,
72
+ device='cpu'):
73
+ context = torch.tensor(context, dtype=torch.long, device=device)
74
+ context = context.unsqueeze(0)
75
+ generated = context
76
+ with torch.no_grad():
77
+ for _ in trange(length):
78
+ inputs = {'input_ids': generated[0][-(n_ctx - 1):].unsqueeze(0)}
79
+ outputs = model(
80
+ **inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
81
+ next_token_logits = outputs[0][0, -1, :]
82
+ for id in set(generated):
83
+ next_token_logits[id] /= repitition_penalty
84
+ next_token_logits = next_token_logits / temperature
85
+ next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
86
+ filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
87
+ next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
88
+ generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
89
+ return generated.tolist()[0]
90
+
91
+
92
+ def fast_sample_sequence(model, context, length, temperature=1.0, top_k=30, top_p=0.0, device='cpu'):
93
+ inputs = torch.LongTensor(context).view(1, -1).to(device)
94
+ if len(context) > 1:
95
+ _, past = model(inputs[:, :-1], None)[:2]
96
+ prev = inputs[:, -1].view(1, -1)
97
+ else:
98
+ past = None
99
+ prev = inputs
100
+ generate = [] + context
101
+ with torch.no_grad():
102
+ for i in trange(length):
103
+ output = model(prev, past=past)
104
+ output, past = output[:2]
105
+ output = output[-1].squeeze(0) / temperature
106
+ filtered_logits = top_k_top_p_filtering(output, top_k=top_k, top_p=top_p)
107
+ next_token = torch.multinomial(torch.softmax(filtered_logits, dim=-1), num_samples=1)
108
+ generate.append(next_token.item())
109
+ prev = next_token.view(1, 1)
110
+ return generate
111
+
112
+
113
+ # 通过命令行参数--fast_pattern,指定模式
114
+ def generate(n_ctx, model, context, length, tokenizer, temperature=1, top_k=0, top_p=0.0, repitition_penalty=1.0, device='cpu',
115
+ is_fast_pattern=False):
116
+ if is_fast_pattern:
117
+ return fast_sample_sequence(model, context, length, temperature=temperature, top_k=top_k, top_p=top_p,
118
+ device=device)
119
+ else:
120
+ return sample_sequence(model, context, length, n_ctx, tokenizer=tokenizer, temperature=temperature, top_k=top_k, top_p=top_p,
121
+ repitition_penalty=repitition_penalty, device=device)
122
+
123
+ def smp_generate(pre_str):
124
+
125
+ from tokenizations import tokenization_bert
126
+
127
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3' # 此处设置程序使用哪些显卡
128
+ length = 500
129
+ batch_size = 1
130
+ nsamples = 1
131
+ temperature = 1
132
+ topk = 8
133
+ topp = 0
134
+ repetition_penalty = 1.0
135
+ model_path = 'pretrained'
136
+ tokenizer_path = 'cache/vocab.txt'
137
+ save_samples = False
138
+ save_samples_path = '.'
139
+ fast_pattern = True
140
+ prefix = pre_str
141
+
142
+ device = "cuda" if torch.cuda.is_available() else "cpu"
143
+
144
+ tokenizer = tokenization_bert.BertTokenizer(vocab_file=tokenizer_path)
145
+ model = GPT2LMHeadModel.from_pretrained(model_path)
146
+ model.to(device)
147
+ model.eval()
148
+
149
+ n_ctx = model.config.n_ctx
150
+
151
+ if length == -1:
152
+ length = model.config.n_ctx
153
+
154
+ while True:
155
+ raw_text = prefix
156
+ context_tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(raw_text))
157
+ generated = 0
158
+ for _ in range(nsamples // batch_size):
159
+ out = generate(
160
+ n_ctx=n_ctx,
161
+ model=model,
162
+ context=context_tokens,
163
+ length=length,
164
+ is_fast_pattern=fast_pattern, tokenizer=tokenizer,
165
+ temperature=temperature, top_k=topk, top_p=topp, repitition_penalty=repetition_penalty, device=device
166
+ )
167
+ for i in range(batch_size):
168
+ generated += 1
169
+ text = tokenizer.convert_ids_to_tokens(out)
170
+ for i, item in enumerate(text[:-1]): # 确保英文前后有空格
171
+ if is_word(item) and is_word(text[i + 1]):
172
+ text[i] = item + ' '
173
+ for i, item in enumerate(text):
174
+ if item == '[MASK]':
175
+ text[i] = ''
176
+ elif item == '[CLS]':
177
+ text[i] = '\n\n'
178
+ elif item == '[SEP]':
179
+ text[i] = '\n'
180
+ info = "=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40 + "\n"
181
+ text = ''.join(text).replace('##', '').strip()
182
+ return text
183
+
184
+
185
+ if __name__ == '__main__':
186
+ print(smp_generate('曹贼休走'))
187
+
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ transformers==2.1.1
2
+ torch
3
+ numpy
4
+ tqdm
5
+ sklearn
6
+ keras
7
+ tb-nightly
8
+ future
9
+ thulac