Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from tf.keras.models import load_model | |
from PIL import Image | |
import os | |
from huggingface_hub import notebook_login | |
from huggingface_hub import hf_hub_download | |
# Title of the Streamlit app | |
st.title("Yellow Rust Severity Prediction") | |
# Downloading Model from hugging face url | |
st.write("Downloading model from Hugging Face repo:", model_repo_id) | |
# Download the model file from Hugging Face | |
model_path = hf_hub_download(repo_id="shaheer-data/Yellow-Rust-Prediction", filename="final_meta_model.keras") | |
# Construct the model URL | |
st.write("Loading model from Hugging Face repo:", model_repo_id) | |
loaded_model = load_model(model_path) # Load model using tf.keras directly | |
# Function to make predictions | |
def predict_image(image): | |
image = image.resize((224, 224)) # Resize to match model input dimensions | |
image_array = tf.keras.preprocessing.image.img_to_array(image) | |
image_array = tf.expand_dims(image_array, axis=0) # Expand dimensions for batch prediction | |
predictions = loaded_model.predict(image_array) | |
return predictions | |
# Class labels for Yellow Rust severity levels | |
CLASS_LABELS = [ | |
"Healthy", | |
"Mild Severity", | |
"Moderate Severity", | |
"Severe Severity", | |
"Very Severe", | |
"Extreme Severity" | |
] | |
# Image upload widget | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Display progress bar | |
with st.spinner("Making predictions..."): | |
predictions = predict_image(image) | |
predicted_class = predictions.argmax(axis=-1) | |
st.write(f"Predicted Severity Level: {CLASS_LABELS[predicted_class[0]]} with confidence {predictions[0][predicted_class[0]]:.2f}") | |
else: | |
st.write("Please upload an image file to make predictions.") | |