Spaces:
Sleeping
Sleeping
File size: 4,498 Bytes
2c5cec5 749cc5e 986b2d7 0b86400 dfbae18 986b2d7 dfbae18 0b86400 19d3a8a 2b40245 e997fea a820da6 dfbae18 0b86400 02acf5d 730cb6b 986b2d7 730cb6b 986b2d7 dfbae18 986b2d7 dfbae18 986b2d7 02acf5d 730cb6b 02acf5d 986b2d7 730cb6b 986b2d7 c0beb83 ac847e4 986b2d7 0b86400 986b2d7 ac847e4 0b86400 986b2d7 0b86400 986b2d7 0b86400 c0beb83 986b2d7 0b86400 986b2d7 0b86400 986b2d7 0b86400 986b2d7 0b86400 986b2d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
from PIL import Image
import numpy as np
import os
from huggingface_hub import hf_hub_download, login
# Set page configuration
st.set_page_config(page_title="Yellow Rust Severity Prediction", layout="wide", initial_sidebar_state="expanded")
# Authentication using Hugging Face token
authkey = os.getenv('YellowRust')
login(token=authkey)
# Download the model file from Hugging Face
model_path = hf_hub_download(repo_id="shaheer-data/Yellow-Rust-Prediction", filename="final_meta_model.keras")
# Load the pre-trained model
loaded_model = load_model(model_path)
# Function to preprocess the uploaded image
def preprocess_image(image):
image = image.resize((224, 224)) # Resize to match model input size
image = img_to_array(image) # Convert image to numpy array
image = image / 255.0 # Normalize pixel values to [0, 1]
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
# Sidebar layout with a colorful menu
st.sidebar.markdown('<p style="font-size: 24px; color: #2F4F4F; font-weight: bold;">Yellow Rust Prediction</p>', unsafe_allow_html=True)
st.sidebar.markdown('<p style="color: #555;">Upload an image of the wheat leaf to predict the severity of yellow rust.</p>', unsafe_allow_html=True)
# Sidebar elements
uploaded_file = st.sidebar.file_uploader("Upload Wheat Leaf Image", type=["jpg", "jpeg", "png"])
st.sidebar.markdown("---")
# Main content
st.title("Yellow Rust Severity Prediction")
st.markdown('<p style="text-align: center; color: #2F4F4F; font-size: 30px; font-weight: bold;">Yellow Rust Severity Prediction Dashboard</p>', unsafe_allow_html=True)
# Display the uploaded image
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Wheat Leaf", use_column_width=True)
# Preprocess the image
processed_image = preprocess_image(image)
# Predict severity with a spinner
with st.spinner("Predicting..."):
prediction = loaded_model.predict(processed_image)
predicted_class = np.argmax(prediction, axis=1)[0] # Get the class index
class_labels = ['Healthy', 'Mild Rust (MR)', 'Moderate Rust (MRMS)', 'Severe Rust (MS)', 'Very Severe Rust (R)', 'Extremely Severe Rust (S)']
st.header("Predicted Severity Class")
# Conditional statements for displaying the prediction with styled headers and colors
if predicted_class == 0:
st.markdown('<p style="color: green; font-size: 22px; font-weight: bold;">Healthy</p>', unsafe_allow_html=True)
st.write("The leaf appears healthy. There is no immediate action required. Continue monitoring as needed.")
elif predicted_class == 1:
st.markdown('<p style="color: orange; font-size: 22px; font-weight: bold;">Mild Rust (MR)</p>', unsafe_allow_html=True)
st.write("Mild rust detected. Applying fungicides will help control further spread.")
elif predicted_class == 2:
st.markdown('<p style="color: #FFA500; font-size: 22px; font-weight: bold;">Moderate Rust (MRMS)</p>', unsafe_allow_html=True)
st.write("Moderate rust detected. Monitor regularly and treat with fungicides.")
elif predicted_class == 3:
st.markdown('<p style="color: #FF4500; font-size: 22px; font-weight: bold;">Severe Rust (MS)</p>', unsafe_allow_html=True)
st.write("Severe rust detected. Prompt fungicide application and continued monitoring are recommended.")
elif predicted_class == 4:
st.markdown('<p style="color: red; font-size: 22px; font-weight: bold;">Very Severe Rust (R)</p>', unsafe_allow_html=True)
st.write("Very severe rust detected. Intensive control measures and frequent monitoring are required.")
elif predicted_class == 5:
st.markdown('<p style="color: darkred; font-size: 22px; font-weight: bold;">Extremely Severe Rust (S)</p>', unsafe_allow_html=True)
st.write("Extremely severe rust detected. Apply aggressive control strategies and seek expert advice.")
confidence = np.max(prediction) * 100
st.markdown(f'<p style="color: #17a2b8; font-size: 18px; font-weight: bold;">Confidence Level: {confidence:.2f}%</p>', unsafe_allow_html=True)
# Footer
st.info("MPHIL Final Year Project By Mr. Asim Khattak", icon="π")
|