Spaces:
Configuration error
Configuration error
import math | |
from typing import Callable, Dict, List, Optional, Tuple | |
import numpy as np | |
import PIL | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
class LoraInjectedLinear(nn.Module): | |
def __init__(self, in_features, out_features, bias=False, r=4): | |
super().__init__() | |
if r > min(in_features, out_features): | |
raise ValueError( | |
f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}" | |
) | |
self.linear = nn.Linear(in_features, out_features, bias) | |
self.lora_down = nn.Linear(in_features, r, bias=False) | |
self.lora_up = nn.Linear(r, out_features, bias=False) | |
self.scale = 1.0 | |
nn.init.normal_(self.lora_down.weight, std=1 / r**2) | |
nn.init.zeros_(self.lora_up.weight) | |
def forward(self, input): | |
return self.linear(input) + self.lora_up(self.lora_down(input)) * self.scale | |
def inject_trainable_lora( | |
model: nn.Module, | |
target_replace_module: List[str] = ["CrossAttention", "Attention"], | |
r: int = 4, | |
loras=None, # path to lora .pt | |
): | |
""" | |
inject lora into model, and returns lora parameter groups. | |
""" | |
require_grad_params = [] | |
names = [] | |
if loras != None: | |
loras = torch.load(loras) | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for name, _child_module in _module.named_modules(): | |
if _child_module.__class__.__name__ == "Linear": | |
weight = _child_module.weight | |
bias = _child_module.bias | |
_tmp = LoraInjectedLinear( | |
_child_module.in_features, | |
_child_module.out_features, | |
_child_module.bias is not None, | |
r, | |
) | |
_tmp.linear.weight = weight | |
if bias is not None: | |
_tmp.linear.bias = bias | |
# switch the module | |
_module._modules[name] = _tmp | |
require_grad_params.append( | |
_module._modules[name].lora_up.parameters() | |
) | |
require_grad_params.append( | |
_module._modules[name].lora_down.parameters() | |
) | |
if loras != None: | |
_module._modules[name].lora_up.weight = loras.pop(0) | |
_module._modules[name].lora_down.weight = loras.pop(0) | |
_module._modules[name].lora_up.weight.requires_grad = True | |
_module._modules[name].lora_down.weight.requires_grad = True | |
names.append(name) | |
return require_grad_params, names | |
def extract_lora_ups_down(model, target_replace_module=["CrossAttention", "Attention"]): | |
loras = [] | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for _child_module in _module.modules(): | |
if _child_module.__class__.__name__ == "LoraInjectedLinear": | |
loras.append((_child_module.lora_up, _child_module.lora_down)) | |
if len(loras) == 0: | |
raise ValueError("No lora injected.") | |
return loras | |
def save_lora_weight( | |
model, path="./lora.pt", target_replace_module=["CrossAttention", "Attention"] | |
): | |
weights = [] | |
for _up, _down in extract_lora_ups_down( | |
model, target_replace_module=target_replace_module | |
): | |
weights.append(_up.weight) | |
weights.append(_down.weight) | |
torch.save(weights, path) | |
def save_lora_as_json(model, path="./lora.json"): | |
weights = [] | |
for _up, _down in extract_lora_ups_down(model): | |
weights.append(_up.weight.detach().cpu().numpy().tolist()) | |
weights.append(_down.weight.detach().cpu().numpy().tolist()) | |
import json | |
with open(path, "w") as f: | |
json.dump(weights, f) | |
def weight_apply_lora( | |
model, loras, target_replace_module=["CrossAttention", "Attention"], alpha=1.0 | |
): | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for _child_module in _module.modules(): | |
if _child_module.__class__.__name__ == "Linear": | |
weight = _child_module.weight | |
up_weight = loras.pop(0).detach().to(weight.device) | |
down_weight = loras.pop(0).detach().to(weight.device) | |
# W <- W + U * D | |
weight = weight + alpha * (up_weight @ down_weight).type( | |
weight.dtype | |
) | |
_child_module.weight = nn.Parameter(weight) | |
def monkeypatch_lora( | |
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4 | |
): | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for name, _child_module in _module.named_modules(): | |
if _child_module.__class__.__name__ == "Linear": | |
weight = _child_module.weight | |
bias = _child_module.bias | |
_tmp = LoraInjectedLinear( | |
_child_module.in_features, | |
_child_module.out_features, | |
_child_module.bias is not None, | |
r=r, | |
) | |
_tmp.linear.weight = weight | |
if bias is not None: | |
_tmp.linear.bias = bias | |
# switch the module | |
_module._modules[name] = _tmp | |
up_weight = loras.pop(0) | |
down_weight = loras.pop(0) | |
_module._modules[name].lora_up.weight = nn.Parameter( | |
up_weight.type(weight.dtype) | |
) | |
_module._modules[name].lora_down.weight = nn.Parameter( | |
down_weight.type(weight.dtype) | |
) | |
_module._modules[name].to(weight.device) | |
def monkeypatch_replace_lora( | |
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4 | |
): | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for name, _child_module in _module.named_modules(): | |
if _child_module.__class__.__name__ == "LoraInjectedLinear": | |
weight = _child_module.linear.weight | |
bias = _child_module.linear.bias | |
_tmp = LoraInjectedLinear( | |
_child_module.linear.in_features, | |
_child_module.linear.out_features, | |
_child_module.linear.bias is not None, | |
r=r, | |
) | |
_tmp.linear.weight = weight | |
if bias is not None: | |
_tmp.linear.bias = bias | |
# switch the module | |
_module._modules[name] = _tmp | |
up_weight = loras.pop(0) | |
down_weight = loras.pop(0) | |
_module._modules[name].lora_up.weight = nn.Parameter( | |
up_weight.type(weight.dtype) | |
) | |
_module._modules[name].lora_down.weight = nn.Parameter( | |
down_weight.type(weight.dtype) | |
) | |
_module._modules[name].to(weight.device) | |
def monkeypatch_add_lora( | |
model, | |
loras, | |
target_replace_module=["CrossAttention", "Attention"], | |
alpha: float = 1.0, | |
beta: float = 1.0, | |
): | |
for _module in model.modules(): | |
if _module.__class__.__name__ in target_replace_module: | |
for name, _child_module in _module.named_modules(): | |
if _child_module.__class__.__name__ == "LoraInjectedLinear": | |
weight = _child_module.linear.weight | |
up_weight = loras.pop(0) | |
down_weight = loras.pop(0) | |
_module._modules[name].lora_up.weight = nn.Parameter( | |
up_weight.type(weight.dtype).to(weight.device) * alpha | |
+ _module._modules[name].lora_up.weight.to(weight.device) * beta | |
) | |
_module._modules[name].lora_down.weight = nn.Parameter( | |
down_weight.type(weight.dtype).to(weight.device) * alpha | |
+ _module._modules[name].lora_down.weight.to(weight.device) | |
* beta | |
) | |
_module._modules[name].to(weight.device) | |
def tune_lora_scale(model, alpha: float = 1.0): | |
for _module in model.modules(): | |
if _module.__class__.__name__ == "LoraInjectedLinear": | |
_module.scale = alpha | |
def _text_lora_path(path: str) -> str: | |
assert path.endswith(".pt"), "Only .pt files are supported" | |
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"]) | |
def _ti_lora_path(path: str) -> str: | |
assert path.endswith(".pt"), "Only .pt files are supported" | |
return ".".join(path.split(".")[:-1] + ["ti", "pt"]) | |
def load_learned_embed_in_clip( | |
learned_embeds_path, text_encoder, tokenizer, token=None, idempotent=False | |
): | |
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu") | |
# separate token and the embeds | |
trained_token = list(loaded_learned_embeds.keys())[0] | |
embeds = loaded_learned_embeds[trained_token] | |
# cast to dtype of text_encoder | |
dtype = text_encoder.get_input_embeddings().weight.dtype | |
# add the token in tokenizer | |
token = token if token is not None else trained_token | |
num_added_tokens = tokenizer.add_tokens(token) | |
i = 1 | |
if num_added_tokens == 0 and idempotent: | |
return token | |
while num_added_tokens == 0: | |
print(f"The tokenizer already contains the token {token}.") | |
token = f"{token[:-1]}-{i}>" | |
print(f"Attempting to add the token {token}.") | |
num_added_tokens = tokenizer.add_tokens(token) | |
i += 1 | |
# resize the token embeddings | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
# get the id for the token and assign the embeds | |
token_id = tokenizer.convert_tokens_to_ids(token) | |
text_encoder.get_input_embeddings().weight.data[token_id] = embeds | |
return token | |
def patch_pipe( | |
pipe, | |
unet_path, | |
token, | |
alpha: float = 1.0, | |
r: int = 4, | |
patch_text=False, | |
patch_ti=False, | |
idempotent_token=True, | |
): | |
ti_path = _ti_lora_path(unet_path) | |
text_path = _text_lora_path(unet_path) | |
unet_has_lora = False | |
text_encoder_has_lora = False | |
for _module in pipe.unet.modules(): | |
if _module.__class__.__name__ == "LoraInjectedLinear": | |
unet_has_lora = True | |
for _module in pipe.text_encoder.modules(): | |
if _module.__class__.__name__ == "LoraInjectedLinear": | |
text_encoder_has_lora = True | |
if not unet_has_lora: | |
monkeypatch_lora(pipe.unet, torch.load(unet_path), r=r) | |
else: | |
monkeypatch_replace_lora(pipe.unet, torch.load(unet_path), r=r) | |
if patch_text: | |
if not text_encoder_has_lora: | |
monkeypatch_lora( | |
pipe.text_encoder, | |
torch.load(text_path), | |
target_replace_module=["CLIPAttention"], | |
r=r, | |
) | |
else: | |
monkeypatch_replace_lora( | |
pipe.text_encoder, | |
torch.load(text_path), | |
target_replace_module=["CLIPAttention"], | |
r=r, | |
) | |
if patch_ti: | |
token = load_learned_embed_in_clip( | |
ti_path, | |
pipe.text_encoder, | |
pipe.tokenizer, | |
token, | |
idempotent=idempotent_token, | |
) | |